Sunand Raghupathi

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat A Probabilistic Calculus of Actions 1994 Judea Pearl
1
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
1
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
1
+ Explaining and Harnessing Adversarial Examples 2014 Ian Goodfellow
Jonathon Shlens
Christian Szegedy
1
+ Statistics and Causal Inference 1986 Paul W. Holland
1
+ An omnibus test for the two-sample problem using the empirical characteristic function 1986 T. W. Epps
Kenneth J. Singleton
1
+ PDF Chat Multivariate Generalizations of the Wald-Wolfowitz and Smirnov Two-Sample Tests 1979 Jerome H. Friedman
Lawrence C. Rafsky
1
+ Bayesian Nonparametric Modeling for Causal Inference 2010 Jennifer Hill
1
+ Can Nonrandomized Experiments Yield Accurate Answers? A Randomized Experiment Comparing Random and Nonrandom Assignments 2008 William R. Shadish
M. H. Clark
Peter M. Steiner
1
+ Graph-Theoretic Measures of Multivariate Association and Prediction 1983 Jerome H. Friedman
Lawrence C. Rafsky
1
+ A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect 1986 James M. Robins
1
+ Bias-Corrected Matching Estimators for Average Treatment Effects 2010 Alberto Abadie
Guido W. Imbens
1
+ Scikit-learn: Machine Learning in Python 2012 FabiĂĄn Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
1
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+ PDF Chat Bootstrap Methods: Another Look at the Jackknife 1979 B. Efron
1
+ Conditional Generative Adversarial Nets 2014 Mehdi Mirza
Simon Osindero
1
+ Estimating causal effects of treatments in randomized and nonrandomized studies. 1974 Donald B. Rubin
1
+ Introduction to Robust Estimation and Hypothesis Testing 2012 Rand R. Wilcox
1
+ Implementation of G-Computation on a Simulated Data Set: Demonstration of a Causal Inference Technique 2011 Jonathan M. Snowden
Sherri Rose
Kathleen Mortimer
1
+ PDF Chat The performance of estimators based on the propensity score 2013 Martin Huber
Michael Lechner
Conny Wunsch
1
+ Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks 2015 Nicolas Papernot
Patrick McDaniel
Xi Wu
Somesh Jha
Ananthram Swami
1
+ PDF Chat Rethinking the Inception Architecture for Computer Vision 2016 Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
1
+ PDF Chat Understanding adversarial training: Increasing local stability of supervised models through robust optimization 2018 Uri Shaham
Yutaro Yamada
Sahand Negahban
1
+ PDF Chat Perceptual Losses for Real-Time Style Transfer and Super-Resolution 2016 Justin Johnson
Alexandre Alahi
Li Fei-Fei
1
+ One-shot Learning with Memory-Augmented Neural Networks 2016 Adam Santoro
Sergey Bartunov
Matthew Botvinick
Daan Wierstra
Timothy Lillicrap
1
+ PDF Chat DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 2017 Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Murphy
Alan Yuille
1
+ Adversarial examples in the physical world 2016 Alexey Kurakin
Ian Goodfellow
Samy Bengio
1
+ Blocking Transferability of Adversarial Examples in Black-Box Learning Systems 2017 Hossein Hosseini
Yize Chen
Sreeram Kannan
Baosen Zhang
Radha Poovendran
1
+ PDF Chat Practical Black-Box Attacks against Machine Learning 2017 Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
Somesh Jha
Z. Berkay Celik
Ananthram Swami
1
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
1
+ Extending Defensive Distillation 2017 Nicolas Papernot
Patrick McDaniel
1
+ Causal Effect Inference with Deep Latent-Variable Models 2017 Christos Louizos
Uri Shalit
Joris M. Mooij
David Sontag
Richard S. Zemel
Max Welling
1
+ PDF Chat Metalearners for estimating heterogeneous treatment effects using machine learning 2019 Sören R. KĂŒnzel
Jasjeet S. Sekhon
Peter J. Bickel
Bin Yu
1
+ Meta-SGD: Learning to Learn Quickly for Few-Shot Learning 2017 Zhenguo Li
Fengwei Zhou
Fei Chen
Hang Li
1
+ PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples 2017 Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
1
+ Synth-Validation: Selecting the Best Causal Inference Method for a Given Dataset 2017 Alejandro Schuler
Ken Jung
Robert Tibshirani
Trevor Hastie
Nigam H. Shah
1
+ PDF Chat Defense Against Adversarial Attacks Using High-Level Representation Guided Denoiser 2018 Fangzhou Liao
Ming Liang
Yinpeng Dong
Tianyu Pang
Xiaolin Hu
Jun Zhu
1
+ How well does your sampler really work? 2017 Ryan Turner
Brady Neal
1
+ Benchmarking Framework for Performance-Evaluation of Causal Inference Analysis. 2018 Yishai Shimoni
Chen Yanover
Ehud Karavani
Yaara Goldschmnidt
1
+ Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation 2018 Liang-Chieh Chen
Yukun Zhu
George Papandreou
Florian Schroff
Hartwig Adam
1
+ Multimodal Unsupervised Image-to-Image Translation 2018 Xun Huang
Ming-Yu Liu
Serge Belongie
Jan Kautz
1
+ Comparing methods for estimation of heterogeneous treatment effects using observational data from health care databases 2018 Thierry Wendling
Kenneth Jung
Alison Callahan
Alejandro Schuler
Nigam H. Shah
Blanca Gallego
1
+ Removing Hidden Confounding by Experimental Grounding 2018 Nathan Kallus
Aahlad Puli
Uri Shalit
1
+ Meta-Learning: A Survey 2018 Joaquin Vanschoren
1
+ PDF Chat The Open Images Dataset V4 2020 Alina Kuznetsova
Hassan Rom
Neil Alldrin
Jasper Uijlings
Ivan Krasin
Jordi Pont-Tuset
Shahab Kamali
Stefan Popov
Matteo Malloci
Alexander Kolesnikov
1
+ Few-shot Learning: A Survey 2019 Yaqing Wang
Quanming Yao
1
+ Generalizing from a Few Examples: A Survey on Few-Shot Learning 2019 Yaqing Wang
Quanming Yao
James T. Kwok
Lionel M. Ni
1
+ Visualizing the Consequences of Climate Change Using Cycle-Consistent Adversarial Networks 2019 Victor Schmidt
Alexandra Sasha Luccioni
S. Karthik Mukkavilli
Narmada Balasooriya
Kris Sankaran
Jennifer Chayes
Yoshua Bengio
1
+ An Evaluation Toolkit to Guide Model Selection and Cohort Definition in Causal Inference 2019 Yishai Shimoni
Ehud Karavani
Sivan Ravid
Peter Michael Bak
Tan Hung Ng
Sharon Hensley Alford
Denise Meade
Yaara Goldschmidt
1
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
1