Yan Zhou

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making 2020 Yunfeng Zhang
Q. Vera Liao
Rachel Bellamy
3
+ Identifying and labeling search tasks via query-based hawkes processes 2014 Liangda Li
Hongbo Deng
Anlei Dong
Yi Chang
Hongyuan Zha
2
+ PDF Chat Dyadic event attribution in social networks with mixtures of hawkes processes 2013 Liangda Li
Hongyuan Zha
2
+ Improving Maximum Likelihood Estimation of Temporal Point Process via Discriminative and Adversarial Learning 2018 Junchi Yan
Xin Liu
Liangliang Shi
Changsheng Li
Hongyuan Zha
2
+ The Measure and Mismeasure of Fairness 2018 Sam Corbett‐Davies
Sharad Goel
2
+ Towards A Rigorous Science of Interpretable Machine Learning 2017 Finale Doshi‐Velez
Been Kim
2
+ Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes 1988 Yosihiko Ogata
2
+ PDF Chat Geometric Hawkes Processes with Graph Convolutional Recurrent Neural Networks 2019 Jin Shang
Mingxuan Sun
2
+ An Evaluation of the Human-Interpretability of Explanation 2019 Isaac Lage
Emily Chen
Jeffrey He
Menaka Narayanan
Been Kim
Sam Gershman
Finale Doshi‐Velez
2
+ PDF Chat Modeling the Intensity Function of Point Process Via Recurrent Neural Networks 2017 Shuai Xiao
Junchi Yan
Xiaokang Yang
Hongyuan Zha
Stephen M. Chu
2
+ Spectra of some self-exciting and mutually exciting point processes 1971 Alan G. Hawkes
2
+ PDF Chat Enslaving the Algorithm: From a “Right to an Explanation” to a “Right to Better Decisions”? 2018 Lilian Edwards
Michael Veale
2
+ Recurrent Marked Temporal Point Processes 2016 Nan Du
Hanjun Dai
Rakshit Trivedi
Utkarsh Upadhyay
Manuel Gomez-Rodriguez
Le Song
2
+ FastPoint: Scalable Deep Point Processes 2020 Ali Caner Türkmen
Yuyang Wang
Alexander J. Smola
2
+ PDF Chat Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization 2017 Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
2
+ “Why Should I Trust You?”: Explaining the Predictions of Any Classifier 2016 Marco Ribeiro
Sameer Singh
Carlos Guestrin
2
+ Metrics for Explainable AI: Challenges and Prospects 2018 Robert R. Hoffman
Shane T. Mueller
Gary Klein
Jordan A. Litman
2
+ Manipulating and Measuring Model Interpretability 2018 Forough Poursabzi-Sangdeh
Daniel G. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna Wallach
2
+ Explanation in artificial intelligence: Insights from the social sciences 2018 Tim Miller
2
+ PDF Chat Proxy tasks and subjective measures can be misleading in evaluating explainable AI systems 2020 Zana Buçinca
Phoebe Lin
Krzysztof Z. Gajos
Elena L. Glassman
2
+ To Trust Or Not To Trust A Classifier 2018 Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
1
+ Evidential Deep Learning to Quantify Classification Uncertainty 2018 Murat Şensoy
Lance Kaplan
Melih Kandemir
1
+ Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks 2019 Guotai Wang
Wenqi Li
Michaël Aertsen
Jan Deprest
Sébastien Ourselin
Tom Vercauteren
1
+ Metrics for Explainable AI: Challenges and Prospects. 2018 Robert R. Hoffman
Shane T. Mueller
Gary Klein
Jordan A. Litman
1
+ From Variational to Deterministic Autoencoders 2019 Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
1
+ Relational Representation Learning for Dynamic (Knowledge) Graphs: A Survey. 2019 Seyed Mehran Kazemi
Rishab Goel
Kshitij Jain
Ivan Kobyzev
Akshay Sethi
Peter Forsyth
Pascal Poupart
1
+ Learning Temporal Point Processes via Reinforcement Learning 2018 Shuang Li
Shuai Xiao
Shixiang Zhu
Nan Du
Yao Xie
Le Song
1
+ Censoring Representations with an Adversary 2015 Harrison Edwards
Amos Storkey
1
+ An Empirical Study of Rich Subgroup Fairness for Machine Learning 2019 Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
1
+ Mitigating Unwanted Biases with Adversarial Learning 2018 Brian Hu Zhang
Blake Lemoine
Margaret Mitchell
1
+ Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles 2016 Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
1
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
1
+ Multivariate Hawkes Processes for Large-scale Inference 2016 Rémi Lemonnier
Kevin Scaman
Argyris Kalogeratos
1
+ Modeling Event Propagation via Graph Biased Temporal Point Process 2019 Weichang Wu
Huanxi Liu
Xiaohu Zhang
Yu Liu
Hongyuan Zha
1
+ Learning Hawkes Processes from a handful of events 2019 Farnood Salehi
William Trouleau
Matthias Grossglauser
Patrick Thiran
1
+ Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model 2019 Wenbo Gong
Sebastian Tschiatschek
Sebastian Nowozin
Richard E. Turner
José Miguel Hernández-Lobato
Cheng Zhang
1
+ PDF Chat Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep Ensembles 2020 Siddhartha Jain
Ge Liu
Jonas Mueller
David K. Gifford
1
+ Try Depth Instead of Weight Correlations: Mean-field is a Less Restrictive Assumption for Deeper Networks. 2020 Sebastian Farquhar
Lewis Smith
Yarin Gal
1
+ PDF Chat Uncertainty-Aware Audiovisual Activity Recognition Using Deep Bayesian Variational Inference 2019 Mahesh Subedar
Ranganath Krishnan
Paulo Lopez Meyer
Omesh Tickoo
Jonathan Huang
1
+ PDF Chat Does Explainable Artificial Intelligence Improve Human Decision-Making? 2021 Yasmeen Alufaisan
Laura R. Marusich
Jonathan Z. Bakdash
Yan Zhou
Murat Kantarcıoğlu
1
+ PDF Chat Modeling Event Propagation via Graph Biased Temporal Point Process 2020 Weichang Wu
Huanxi Liu
Xiaohu Zhang
Yu Liu
Hongyuan Zha
1
+ A review of uncertainty quantification in deep learning: Techniques, applications and challenges 2021 Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
Mohammad Ghavamzadeh
Paul Fieguth
Xiaochun Cao
Abbas Khosravi
U. Rajendra Acharya
1
+ PDF Chat Enslaving the Algorithm: From a “Right to an Explanation” to a “Right to Better Decisions”? 2018 Lilian Edwards
Michael Veale
1
+ PDF Chat To Explain or to Predict? 2010 Galit Shmueli
1
+ Reactive point processes: A new approach to predicting power failures in underground electrical systems 2015 Şeyda Ertekin
Cynthia Rudin
Tyler H. McCormick
1
+ PDF Chat To Trust or to Think 2021 Zana Buçinca
Maja Barbara Malaya
Krzysztof Z. Gajos
1
+ Astrologer: Exploiting graph neural Hawkes process for event propagation prediction with spatio-temporal characteristics 2021 Haizhou Du
Yan Zhou
Yunpu Ma
Shiwei Wang
1
+ Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates 2021 Wen-Hao Chiang
Xueying Liu
George Mohler
1
+ Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty 2021 Umang Bhatt
Javier Antorán
Yunfeng Zhang
Q. Vera Liao
Prasanna Sattigeri
Riccardo Fogliato
Gabrielle Gauthier Melançon
Ranganath Krishnan
Jason Stanley
Omesh Tickoo
1
+ Neural Relation Inference for Multi-dimensional Temporal Point Processes via Message Passing Graph 2021 Yunhao Zhang
Junchi Yan
1