Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Yan Zhou
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
GTHP: a novel graph transformer Hawkes process for spatiotemporal event prediction
2024
Yiman Xie
Jianbin Wu
Yan Zhou
+
Using AI Uncertainty Quantification to Improve Human Decision-Making
2023
Laura R. Marusich
Jonathan Z. Bakdash
Yan Zhou
Murat Kantarcıoğlu
+
Using AI Uncertainty Quantification to Improve Human Decision-Making
2023
Laura R. Marusich
Jonathan Z. Bakdash
Yan Zhou
Murat Kantarcıoğlu
+
Astrologer: Exploiting graph neural Hawkes process for event propagation prediction with spatio-temporal characteristics
2021
Haizhou Du
Yan Zhou
Yunpu Ma
Shiwei Wang
+
PDF
Chat
Does Explainable Artificial Intelligence Improve Human Decision-Making?
2021
Yasmeen Alufaisan
Laura R. Marusich
Jonathan Z. Bakdash
Yan Zhou
Murat Kantarcıoğlu
+
Improving Fairness of AI Systems with Lossless De-biasing
2021
Yan Zhou
Murat Kantarcıoğlu
Chris Clifton
+
Does Explainable Artificial Intelligence Improve Human Decision-Making?
2020
Yasmeen Alufaisan
Laura R. Marusich
Jonathan Z. Bakdash
Yan Zhou
Murat Kantarcıoğlu
Common Coauthors
Coauthor
Papers Together
Murat Kantarcıoğlu
5
Jonathan Z. Bakdash
4
Laura R. Marusich
4
Yasmeen Alufaisan
2
Chris Clifton
1
Jianbin Wu
1
Shiwei Wang
1
Haizhou Du
1
Yiman Xie
1
Yunpu Ma
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making
2020
Yunfeng Zhang
Q. Vera Liao
Rachel Bellamy
3
+
Identifying and labeling search tasks via query-based hawkes processes
2014
Liangda Li
Hongbo Deng
Anlei Dong
Yi Chang
Hongyuan Zha
2
+
PDF
Chat
Dyadic event attribution in social networks with mixtures of hawkes processes
2013
Liangda Li
Hongyuan Zha
2
+
Improving Maximum Likelihood Estimation of Temporal Point Process via Discriminative and Adversarial Learning
2018
Junchi Yan
Xin Liu
Liangliang Shi
Changsheng Li
Hongyuan Zha
2
+
The Measure and Mismeasure of Fairness
2018
Sam Corbett‐Davies
Sharad Goel
2
+
Towards A Rigorous Science of Interpretable Machine Learning
2017
Finale Doshi‐Velez
Been Kim
2
+
Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes
1988
Yosihiko Ogata
2
+
PDF
Chat
Geometric Hawkes Processes with Graph Convolutional Recurrent Neural Networks
2019
Jin Shang
Mingxuan Sun
2
+
An Evaluation of the Human-Interpretability of Explanation
2019
Isaac Lage
Emily Chen
Jeffrey He
Menaka Narayanan
Been Kim
Sam Gershman
Finale Doshi‐Velez
2
+
PDF
Chat
Modeling the Intensity Function of Point Process Via Recurrent Neural Networks
2017
Shuai Xiao
Junchi Yan
Xiaokang Yang
Hongyuan Zha
Stephen M. Chu
2
+
Spectra of some self-exciting and mutually exciting point processes
1971
Alan G. Hawkes
2
+
PDF
Chat
Enslaving the Algorithm: From a “Right to an Explanation” to a “Right to Better Decisions”?
2018
Lilian Edwards
Michael Veale
2
+
Recurrent Marked Temporal Point Processes
2016
Nan Du
Hanjun Dai
Rakshit Trivedi
Utkarsh Upadhyay
Manuel Gomez-Rodriguez
Le Song
2
+
FastPoint: Scalable Deep Point Processes
2020
Ali Caner Türkmen
Yuyang Wang
Alexander J. Smola
2
+
PDF
Chat
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
2017
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
2
+
“Why Should I Trust You?”: Explaining the Predictions of Any Classifier
2016
Marco Ribeiro
Sameer Singh
Carlos Guestrin
2
+
Metrics for Explainable AI: Challenges and Prospects
2018
Robert R. Hoffman
Shane T. Mueller
Gary Klein
Jordan A. Litman
2
+
Manipulating and Measuring Model Interpretability
2018
Forough Poursabzi-Sangdeh
Daniel G. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna Wallach
2
+
Explanation in artificial intelligence: Insights from the social sciences
2018
Tim Miller
2
+
PDF
Chat
Proxy tasks and subjective measures can be misleading in evaluating explainable AI systems
2020
Zana Buçinca
Phoebe Lin
Krzysztof Z. Gajos
Elena L. Glassman
2
+
To Trust Or Not To Trust A Classifier
2018
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
1
+
Evidential Deep Learning to Quantify Classification Uncertainty
2018
Murat Şensoy
Lance Kaplan
Melih Kandemir
1
+
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
2019
Guotai Wang
Wenqi Li
Michaël Aertsen
Jan Deprest
Sébastien Ourselin
Tom Vercauteren
1
+
Metrics for Explainable AI: Challenges and Prospects.
2018
Robert R. Hoffman
Shane T. Mueller
Gary Klein
Jordan A. Litman
1
+
From Variational to Deterministic Autoencoders
2019
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
1
+
Relational Representation Learning for Dynamic (Knowledge) Graphs: A Survey.
2019
Seyed Mehran Kazemi
Rishab Goel
Kshitij Jain
Ivan Kobyzev
Akshay Sethi
Peter Forsyth
Pascal Poupart
1
+
Learning Temporal Point Processes via Reinforcement Learning
2018
Shuang Li
Shuai Xiao
Shixiang Zhu
Nan Du
Yao Xie
Le Song
1
+
Censoring Representations with an Adversary
2015
Harrison Edwards
Amos Storkey
1
+
An Empirical Study of Rich Subgroup Fairness for Machine Learning
2019
Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
1
+
Mitigating Unwanted Biases with Adversarial Learning
2018
Brian Hu Zhang
Blake Lemoine
Margaret Mitchell
1
+
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
1
+
Semi-Supervised Classification with Graph Convolutional Networks
2016
Thomas Kipf
Max Welling
1
+
Multivariate Hawkes Processes for Large-scale Inference
2016
Rémi Lemonnier
Kevin Scaman
Argyris Kalogeratos
1
+
Modeling Event Propagation via Graph Biased Temporal Point Process
2019
Weichang Wu
Huanxi Liu
Xiaohu Zhang
Yu Liu
Hongyuan Zha
1
+
Learning Hawkes Processes from a handful of events
2019
Farnood Salehi
William Trouleau
Matthias Grossglauser
Patrick Thiran
1
+
Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model
2019
Wenbo Gong
Sebastian Tschiatschek
Sebastian Nowozin
Richard E. Turner
José Miguel Hernández-Lobato
Cheng Zhang
1
+
PDF
Chat
Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep Ensembles
2020
Siddhartha Jain
Ge Liu
Jonas Mueller
David K. Gifford
1
+
Try Depth Instead of Weight Correlations: Mean-field is a Less Restrictive Assumption for Deeper Networks.
2020
Sebastian Farquhar
Lewis Smith
Yarin Gal
1
+
PDF
Chat
Uncertainty-Aware Audiovisual Activity Recognition Using Deep Bayesian Variational Inference
2019
Mahesh Subedar
Ranganath Krishnan
Paulo Lopez Meyer
Omesh Tickoo
Jonathan Huang
1
+
PDF
Chat
Does Explainable Artificial Intelligence Improve Human Decision-Making?
2021
Yasmeen Alufaisan
Laura R. Marusich
Jonathan Z. Bakdash
Yan Zhou
Murat Kantarcıoğlu
1
+
PDF
Chat
Modeling Event Propagation via Graph Biased Temporal Point Process
2020
Weichang Wu
Huanxi Liu
Xiaohu Zhang
Yu Liu
Hongyuan Zha
1
+
A review of uncertainty quantification in deep learning: Techniques, applications and challenges
2021
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
Mohammad Ghavamzadeh
Paul Fieguth
Xiaochun Cao
Abbas Khosravi
U. Rajendra Acharya
1
+
PDF
Chat
Enslaving the Algorithm: From a “Right to an Explanation” to a “Right to Better Decisions”?
2018
Lilian Edwards
Michael Veale
1
+
PDF
Chat
To Explain or to Predict?
2010
Galit Shmueli
1
+
Reactive point processes: A new approach to predicting power failures in underground electrical systems
2015
Şeyda Ertekin
Cynthia Rudin
Tyler H. McCormick
1
+
PDF
Chat
To Trust or to Think
2021
Zana Buçinca
Maja Barbara Malaya
Krzysztof Z. Gajos
1
+
Astrologer: Exploiting graph neural Hawkes process for event propagation prediction with spatio-temporal characteristics
2021
Haizhou Du
Yan Zhou
Yunpu Ma
Shiwei Wang
1
+
Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates
2021
Wen-Hao Chiang
Xueying Liu
George Mohler
1
+
Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty
2021
Umang Bhatt
Javier Antorán
Yunfeng Zhang
Q. Vera Liao
Prasanna Sattigeri
Riccardo Fogliato
Gabrielle Gauthier Melançon
Ranganath Krishnan
Jason Stanley
Omesh Tickoo
1
+
Neural Relation Inference for Multi-dimensional Temporal Point Processes via Message Passing Graph
2021
Yunhao Zhang
Junchi Yan
1