Navin Goyal

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Exploring Continual Fine-Tuning for Enhancing Language Ability in Large Language Model 2024 Divyanshu Aggarwal
Sankarshan Damle
Navin Goyal
Satya Lokam
Sunayana Sitaram
+ PDF Chat InversionView: A General-Purpose Method for Reading Information from Neural Activations 2024 Xinting Huang
Madhur Panwar
Navin Goyal
Michael Hahn
+ PDF Chat Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically 2024 Kabir Ahuja
Vidhisha Balachandran
Madhur Panwar
Tianxing He
Noah A. Smith
Navin Goyal
Yulia Tsvetkov
+ Artificial Intelligence: From Buzzword to Useful Tool in Clinical Pharmacology 2023 Mohamed H. Shahin
Aline Barth
Jagdeep T. Podichetty
Qi Liu
Navin Goyal
Jin Y. Jin
Danièle Ouellet
+ A Theory of Emergent In-Context Learning as Implicit Structure Induction 2023 Michael G. Hahn
Navin Goyal
+ In-Context Learning through the Bayesian Prism 2023 Kabir Ahuja
Madhur Panwar
Navin Goyal
+ Guiding Language Models of Code with Global Context using Monitors 2023 Lakshya A Agrawal
Aditya Kanade
Navin Goyal
Shuvendu K. Lahiri
Sriram K. Rajamani
+ Revisiting the Compositional Generalization Abilities of Neural Sequence Models 2022 Arkil Patel
Satwik Bhattamishra
Phil Blunsom
Navin Goyal
+ Revisiting the Compositional Generalization Abilities of Neural Sequence Models 2022 Arkil Patel
Satwik Bhattamishra
Phil Blunsom
Navin Goyal
+ When Can Transformers Ground and Compose: Insights from Compositional Generalization Benchmarks 2022 Ankur Sikarwar
Arkil Patel
Navin Goyal
+ Towards a Mathematics Formalisation Assistant using Large Language Models 2022 Ayush Agrawal
Siddhartha Gadgil
Navin Goyal
Ashvni Narayanan
Anand Rao Tadipatri
+ PDF Chat When Can Transformers Ground and Compose: Insights from Compositional Generalization Benchmarks 2022 Ankur Sikarwar
Arkil Patel
Navin Goyal
+ Learning and Generalization in Overparameterized Normalizing Flows. 2021 Kulin Shah
Amit Deshpande
Navin Goyal
+ Learning and Generalization in RNNs 2021 Abhishek Panigrahi
Navin Goyal
+ Analyzing the Nuances of Transformers’ Polynomial Simplification Abilities 2021 Vishesh Agarwal
Somak Aditya
Navin Goyal
+ Do Transformers Understand Polynomial Simplification 2021 Vishesh Agarwal
Somak Aditya
Navin Goyal
+ Are NLP Models really able to Solve Simple Math Word Problems 2021 Arkil Patel
Satwik Bhattamishra
Navin Goyal
+ Analyzing the Nuances of Transformers' Polynomial Simplification Abilities 2021 Vishesh Agarwal
Somak Aditya
Navin Goyal
+ PDF Chat Are NLP Models really able to Solve Simple Math Word Problems? 2021 Arkil Patel
Satwik Bhattamishra
Navin Goyal
+ Learning and Generalization in Overparameterized Normalizing Flows 2021 Kulin Shah
Amit Deshpande
Navin Goyal
+ Are NLP Models really able to Solve Simple Math Word Problems? 2021 Arkil Patel
Satwik Bhattamishra
Navin Goyal
+ Learning and Generalization in RNNs 2021 Abhishek Panigrahi
Navin Goyal
+ On the Practical Ability of Recurrent Neural Networks to Recognize Hierarchical Languages 2020 Satwik Bhattamishra
Kabir Ahuja
Navin Goyal
+ On the Ability of Self-Attention Networks to Recognize Counter Languages. 2020 Satwik Bhattamishra
Kabir Ahuja
Navin Goyal
+ On the Ability and Limitations of Transformers to Recognize Formal Languages 2020 Satwik Bhattamishra
Kabir Ahuja
Navin Goyal
+ On the Computational Power of Transformers and its Implications in Sequence Modeling 2020 Satwik Bhattamishra
Arkil Patel
Navin Goyal
+ PDF Chat Broader Implications of Modeling and Simulation (M&S) Tools in Pharmacotherapeutic Decisions: A Cautionary Optimism 2020 Ayyappa Chaturvedula
Brittany N. Palasik
Hae Jin Cho
Navin Goyal
+ Robust Identifiability in Linear Structural Equation Models of Causal Inference 2020 Karthik Abinav Sankararaman
Anand Louis
Navin Goyal
+ On the Ability and Limitations of Transformers to Recognize Formal Languages 2020 Satwik Bhattamishra
Kabir Ahuja
Navin Goyal
+ On the Computational Power of Transformers and Its Implications in Sequence Modeling 2020 Satwik Bhattamishra
Arkil Patel
Navin Goyal
+ PDF Chat On the Practical Ability of Recurrent Neural Networks to Recognize Hierarchical Languages 2020 Satwik Bhattamishra
Kabir Ahuja
Navin Goyal
+ On the Practical Ability of Recurrent Neural Networks to Recognize Hierarchical Languages 2020 Satwik Bhattamishra
Kabir Ahuja
Navin Goyal
+ On the Ability and Limitations of Transformers to Recognize Formal Languages 2020 Satwik Bhattamishra
Kabir Ahuja
Navin Goyal
+ On the Computational Power of Transformers and its Implications in Sequence Modeling 2020 Satwik Bhattamishra
Arkil Patel
Navin Goyal
+ Effect of Activation Functions on the Training of Overparametrized Neural Nets 2019 Abhishek Panigrahi
Abhishek Shetty
Navin Goyal
+ Model‐Informed Approach to Assess the Treatment Effect Conditional to the Level of Placebo Response 2019 Roberto Goméni
Jonathan Rabinowitz
Navin Goyal
Françoise Bressolle‐Gomeni
Maurizio Fava
+ Sampling and Optimization on Convex Sets in Riemannian Manifolds of Non-Negative Curvature 2019 Navin Goyal
Abhishek Shetty
+ PDF Chat Non-Gaussian component analysis using entropy methods 2019 Navin Goyal
Abhishek Shetty
+ Stability of Linear Structural Equation Models of Causal Inference. 2019 Karthik Abinav Sankararaman
Anand Louis
Navin Goyal
+ Stability of Linear Structural Equation Models of Causal Inference 2019 Karthik Abinav Sankararaman
Anand Louis
Navin Goyal
+ Sampling and Optimization on Convex Sets in Riemannian Manifolds of Non-Negative Curvature 2019 Navin Goyal
Abhishek Shetty
+ Non-Gaussianity of Stochastic Gradient Noise 2019 Abhishek Panigrahi
Raghav Somani
Navin Goyal
Praneeth Netrapalli
+ Effect of Activation Functions on the Training of Overparametrized Neural Nets 2019 Abhishek Panigrahi
Abhishek Shetty
Navin Goyal
+ Heavy-Tailed Analogues of the Covariance Matrix for ICA 2017 Joseph Anderson
Navin Goyal
Anupama Nandi
Luis Rademacher
+ PDF Chat Heavy-Tailed Analogues of the Covariance Matrix for ICA 2017 Joseph Anderson
Navin Goyal
Anupama Nandi
Luis Rademacher
+ Heavy-Tailed Analogues of the Covariance Matrix for ICA 2017 Joseph C. Anderson
Navin Goyal
Anupama Nandi
Luis Rademacher
+ PDF Chat On Computing Maximal Independent Sets of Hypergraphs in Parallel 2016 Ioana O. Bercea
Navin Goyal
David G. Harris
Aravind Srinivasan
+ Better Analysis of GREEDY Binary Search Tree on Decomposable Sequences 2016 Navin Goyal
Manoj Gupta
+ Better Analysis of GREEDY Binary Search Tree on Decomposable Sequences 2016 Navin Goyal
Manoj Gupta
+ PDF Chat Heavy-Tailed Independent Component Analysis 2015 Joseph Anderson
Navin Goyal
Anupama Nandi
Luis Rademacher
+ Heavy-tailed Independent Component Analysis 2015 Joseph Anderson
Navin Goyal
Anupama Nandi
Luis Rademacher
+ PDF Chat The Role of Drug Exposure in Clinical Development: To What Extent Is Pharmacokinetic Assessment Needed in a Drug Development Programme? 2015 Navin Goyal
+ PDF Chat A Novel Methodology to Estimate the Treatment Effect in Presence of Highly Variable Placebo Response 2015 Roberto Goméni
Navin Goyal
Françoise Bressolle
Maurizio Fava
+ Heavy-tailed Independent Component Analysis 2015 Joseph C. Anderson
Navin Goyal
Anupama Nandi
Luis Rademacher
+ PDF Chat Query Complexity of Sampling and Small Geometric Partitions 2014 Navin Goyal
Luis Rademacher
Santosh Vempala
+ PDF Chat On computing maximal independent sets of hypergraphs in parallel 2014 Ioana O. Bercea
Navin Goyal
David G. Harris
Aravind Srinivasan
+ PDF Chat Fourier PCA and robust tensor decomposition 2014 Navin Goyal
Santosh Vempala
Ying Xiao
+ On Computing Maximal Independent Sets of Hypergraphs in Parallel 2014 Ioana O. Bercea
Navin Goyal
David G. Harris
Aravind Srinivasan
+ PDF Chat None 2014 Tobias Brunsch
Navin Goyal
Luis Rademacher
Heiko Roeglin
+ On Computing Maximal Independent Sets of Hypergraphs in Parallel 2014 Ioana O. Bercea
Navin Goyal
David G. Harris
Aravind Srinivasan
+ PDF Chat Annotations for Sparse Data Streams 2013 Amit Chakrabarti
Graham Cormode
Navin Goyal
Justin Thaler
+ The More, the Merrier: the Blessing of Dimensionality for Learning Large Gaussian Mixtures 2013 Joseph Anderson
Mikhail Belkin
Navin Goyal
Luis Rademacher
James Voss
+ A latent variable approach in simultaneous modeling of longitudinal and dropout data in schizophrenia trials 2013 Navin Goyal
Roberto Goméni
+ PDF Chat Deterministic Algorithms for the Lovász Local Lemma 2013 Karthekeyan Chandrasekaran
Navin Goyal
Bernhard Haeupler
+ Adaptive Randomization Study Design in Clinical Trials for Psychiatric Disorders 2013 Navin Goyal
+ Fourier PCA and Robust Tensor Decomposition 2013 Navin Goyal
Santosh Vempala
Ying Xiao
+ Dynamic vs Oblivious Routing in Network Design 2013 Navin Goyal
Neil Olver
F. Bruce Shepherd
+ The More, the Merrier: the Blessing of Dimensionality for Learning Large Gaussian Mixtures 2013 Joseph C. Anderson
Mikhail Belkin
Navin Goyal
Luis Rademacher
James F. Voss
+ Annotations for Sparse Data Streams 2013 Amit Chakrabarti
Graham Cormode
Navin Goyal
Justin Thaler
+ Efficient learning of simplices 2012 Joseph Anderson
Navin Goyal
Luis Rademacher
+ Further Optimal Regret Bounds for Thompson Sampling 2012 Shipra Agrawal
Navin Goyal
+ Thompson Sampling for Contextual Bandits with Linear Payoffs 2012 Shipra Agrawal
Navin Goyal
+ Further Optimal Regret Bounds for Thompson Sampling 2012 Shipra Agrawal
Navin Goyal
+ Efficient learning of simplices 2012 Joseph C. Anderson
Navin Goyal
Luis Rademacher
+ Thompson Sampling for Contextual Bandits with Linear Payoffs 2012 Shipra Agrawal
Navin Goyal
+ A Novel Metric to Assess the Clinical Utility of a Drug in the Presence of Efficacy and Dropout Information 2011 Navin Goyal
Roberto Goméni
+ Analysis of Thompson Sampling for the multi-armed bandit problem 2011 Shipra Agrawal
Navin Goyal
+ On Dynamic Optimality for Binary Search Trees 2011 Navin Goyal
Manoj Gupta
+ Analysis of Thompson Sampling for the multi-armed bandit problem 2011 Shipra Agrawal
Navin Goyal
+ Lower Bounds for the Average and Smoothed Number of Pareto Optima 2011 Navin Goyal
Luis Rademacher
+ PDF Chat Dynamic vs. Oblivious Routing in Network Design 2010 Navin Goyal
Neil Olver
F. Bruce Shepherd
+ Deterministic algorithms for the Lovász Local Lemma 2010 Karthekeyan Chandrasekaran
Navin Goyal
Bernhard Haeupler
+ PDF Chat Deterministic Algorithms for the Lovász Local Lemma 2010 Karthekeyan Chandrasekaran
Navin Goyal
Bernhard Haeupler
+ Satisfiability Thresholds for k-CNF Formula with Bounded Variable Intersections 2010 Karthekeyan Chandrasekaran
Navin Goyal
Bernhard Haeupler
+ Deterministic Algorithms for the Lovasz Local Lemma 2009 Karthekeyan Chandrasekaran
Navin Goyal
Bernhard Haeupler
+ Learning convex bodies is hard 2009 Navin Goyal
Luis Rademacher
+ Expanders via random spanning trees 2009 Navin Goyal
Luis Rademacher
Santosh Vempala
+ PDF Chat Expanders via Random Spanning Trees 2009 Navin Goyal
Luis Rademacher
Santosh Vempala
+ PDF Chat Dynamic vs. Oblivious Routing in Network Design 2009 Navin Goyal
Neil Olver
F. Bruce Shepherd
+ Learning convex bodies is hard 2009 Luis Rademacher
Navin Goyal
+ Deterministic Algorithms for the Lovasz Local Lemma 2009 Karthekeyan Chandrasekaran
Navin Goyal
Bernhard Haeupler
+ Expanders via Random Spanning Trees 2008 Navin Goyal
Luis Rademacher
Santosh Vempala
+ The Graham-Knowlton Problem Revisited 2006 Navin Goyal
Sachin Lodha
S. Muthukrishnan
+ PDF Chat An Efficient Approximation Algorithm for Point Pattern Matching Under Noise 2006 Vicky Choi
Navin Goyal
+ A parallel search game 2005 Navin Goyal
Michael Saks
+ An Efficient Approximation Algorithm for Point Pattern Matching Under Noise 2005 Vicky Choi
Navin Goyal
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
8
+ On the computational power of RNNs 2019 Samuel A. Korsky
Robert C. Berwick
7
+ On the Practical Computational Power of Finite Precision RNNs for Language Recognition 2018 Gail Garfinkel Weiss
Yoav Goldberg
Eran Yahav
7
+ Evaluating the Ability of LSTMs to Learn Context-Free Grammars 2018 Luzi Sennhauser
Robert C. Berwick
6
+ PDF Chat A random polynomial-time algorithm for approximating the volume of convex bodies 1991 Martin Dyer
Alan Frieze
Ravi Kannan
5
+ Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned 2019 Elena Voita
David Talbot
Fédor Moiseev
Rico Sennrich
Ivan Titov
4
+ ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES 1933 W. R THOMPSON
4
+ PDF Chat DiSAN: Directional Self-Attention Network for RNN/CNN-Free Language Understanding 2018 Tao Shen
Tianyi Zhou
Guodong Long
Jing Jiang
Shirui Pan
Chengqi Zhang
4
+ PDF Chat A Formal Hierarchy of RNN Architectures 2020 William Merrill
Gail Garfinkel Weiss
Yoav Goldberg
Roy Schwartz
Noah A. Smith
Eran Yahav
4
+ Covariance estimation for distributions with ${2+\varepsilon}$ moments 2013 Nikhil Srivastava
Roman Vershynin
4
+ LSTM Networks Can Perform Dynamic Counting 2019 Mirac Süzgün
Yonatan Belinkov
Stuart M. Shieber
Sebastian Gehrmann
4
+ RoBERTa: A Robustly Optimized BERT Pretraining Approach 2019 Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
Mike Lewis
Luke Zettlemoyer
Veselin Stoyanov
4
+ PDF Chat A constructive proof of the general lovász local lemma 2010 Robin A. Moser
Gábor Tardos
4
+ Attention Is All You Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
4
+ Transformer-XL: Attentive Language Models beyond a Fixed-Length Context 2019 Zihang Dai
Zhilin Yang
Yiming Yang
Jaime Carbonell
Quoc V. Le
Ruslan Salakhutdinov
4
+ Assessing the Ability of Self-Attention Networks to Learn Word Order 2019 Baosong Yang
Longyue Wang
Derek F. Wong
Lidia S. Chao
Zhaopeng Tu
4
+ Transformer Dissection: An Unified Understanding for Transformer’s Attention via the Lens of Kernel 2019 Yao-Hung Hubert Tsai
Shaojie Bai
Makoto Yamada
Louis–Philippe Morency
Ruslan Salakhutdinov
4
+ On the Computational Power of RNNs 2019 Samuel A. Korsky
Robert C. Berwick
3
+ Concentration and moment inequalities for polynomials of independent random variables 2012 Warren Schudy
Maxim Sviridenko
3
+ PDF Chat Isoperimetric problems for convex bodies and a localization lemma 1995 Ravi Kannan
László Lovász
Miklós Simonovits
3
+ Sequential Neural Networks as Automata 2019 William Merrill
3
+ Gradient Descent Provably Optimizes Over-parameterized Neural Networks 2018 Simon S. Du
Xiyu Zhai
Barnabás Póczos
Aarti Singh
3
+ Smoothed analysis of algorithms 2004 Daniel A. Spielman
Shang‐Hua Teng
3
+ Are Transformers universal approximators of sequence-to-sequence functions? 2019 Chulhee Yun
Srinadh Bhojanapalli
Ankit Singh Rawat
Sashank J. Reddi
Sanjiv Kumar
3
+ PDF Chat Tensor Decompositions for Learning Latent Variable Models 2012 Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
3
+ On the Turing Completeness of Modern Neural Network Architectures 2019 Jorge Eduardo Pérez Pérez
Javier Marinković
Pablo Barceló
3
+ Stability of causal inference 2016 Leonard J. Schulman
Piyush Srivastava
3
+ Coloring nonuniform hypergraphs: A new algorithmic approach to the general Lov�sz local lemma 2000 Artur Czumaj
Christian Scheideler
3
+ PDF Chat Learning mixtures of spherical gaussians 2013 Daniel Hsu
Sham M. Kakade
3
+ Neural Tangent Kernel: Convergence and Generalization in Neural Networks 2018 Arthur Paul Jacot
Franck Gabriel
Clément Hongler
3
+ PDF Chat Model-Based Approach and Signal Detection Theory to Evaluate the Performance of Recruitment Centers in Clinical Trials With Antidepressant Drugs 2008 Emilio Merlo‐Pich
Roberto Goméni
3
+ Ramsey's theorem—A new lower bound 1975 Joel Spencer
3
+ A New Population-Enrichment Strategy to Improve Efficiency of Placebo-Controlled Clinical Trials of Antidepressant Drugs 2010 Emilio Merlo‐Pich
Robert Alexander
Maurizio Fava
Roberto Goméni
3
+ Computing maximum likelihood estimates in recursive linear models with correlated errors 2006 Mathias Drton
Michael Eichler
Thomas S. Richardson
3
+ A fast and simple randomized parallel algorithm for the maximal independent set problem 1986 Noga Alon
László Babai
Alon Itai
3
+ Random Vectors in the Isotropic Position 1999 Mark Rudelson
3
+ PDF Chat New Constructive Aspects of the Lovász Local Lemma 2011 Bernhard Haeupler
Barna Saha
Aravind Srinivasan
3
+ PDF Chat STATISTICS AND CAUSAL INFERENCE* 1985 Paul W. Holland
Clark Glymour
Clive W. J. Granger
3
+ Improved Algorithms via Approximations of Probability Distributions 2000 Suresh Chari
Pankaj Rohatgi
Aravind Srinivasan
3
+ Learning mixtures of arbitrary gaussians 2001 Sanjeev Arora
Ravi Kannan
3
+ Structure from Local Optima: Learning Subspace Juntas via Higher Order PCA 2011 Santosh Vempala
Ying Xiao
3
+ Simulated annealing in convex bodies and an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> volume algorithm 2005 László Lovász
Santosh Vempala
3
+ Analysis of Thompson Sampling for the multi-armed bandit problem 2011 Shipra Agrawal
Navin Goyal
3
+ Linear structural equations with latent variables 1980 Peter M. Bentler
David G. Weeks
3
+ Finding Large Independent Sets in Graphs and Hypergraphs 2004 Hadas Shachnai
Aravind Srinivasan
3
+ Polynomial Learning of Distribution Families 2010 Mikhail Belkin
K. P. Sinha
3
+ PDF Chat Provable ICA with Unknown Gaussian Noise, and Implications for Gaussian Mixtures and Autoencoders 2015 Sanjeev Arora
Rong Ge
Ankur Moitra
Sushant Sachdeva
3
+ PDF Chat Effective Approaches to Attention-based Neural Machine Translation 2015 Thang Luong
Hieu Pham
Christopher D. Manning
2
+ Analysis of Boolean Functions 2014 Ryan O’Donnell
2
+ Pseudo-random Graphs 2006 Michael Krivelevich
Benny Sudakov
2