Vaanathi Sundaresan

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Automated quality assessment using appearance-based simulations and hippocampus segmentation on low-field paediatric brain MR images 2024 Vaanathi Sundaresan
Nicola K. Dinsdale
+ Class Activation Map-based Weakly supervised Hemorrhage Segmentation using Resnet-LSTM in Non-Contrast Computed Tomography images 2023 Shreyas H Ramananda
Vaanathi Sundaresan
+ Challenges for machine learning in clinical translation of big data imaging studies 2022 Nicola K. Dinsdale
Emma Bluemke
Vaanathi Sundaresan
Mark Jenkinson
Stephen M. Smith
Ana I. L. Namburete
+ PDF Chat Constrained Self-supervised Method with Temporal Ensembling for Fiber Bundle Detection on Anatomic Tracing Data 2022 Vaanathi Sundaresan
Julia Lehman
Sean P. Fitzgibbon
Saâd Jbabdi
Suzanne N. Haber
Anastasia Yendiki
+ Constrained self-supervised method with temporal ensembling for fiber bundle detection on anatomic tracing data 2022 Vaanathi Sundaresan
Julia Lehman
Sean P. Fitzgibbon
Saâd Jbabdi
Suzanne N. Haber
Anastasia Yendiki
+ PDF Chat Brain Tumour Segmentation Using a Triplanar Ensemble of U-Nets on MR Images 2021 Vaanathi Sundaresan
Ludovica Griffanti
Mark Jenkinson
+ Challenges for machine learning in clinical translation of big data imaging studies 2021 Nicola K. Dinsdale
Emma Bluemke
Vaanathi Sundaresan
Mark Jenkinson
Stephen W. Smith
Ana IL Namburete
+ Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference 2018 Vaanathi Sundaresan
Ludovica Griffanti
Petya Kindalova
Fidel Alfaro-Almagro
Giovanna Zamboni
Peter M. Rothwell
Thomas E. Nichols
Mark Jenkinson
+ PDF Chat Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference 2018 Vaanathi Sundaresan
Ludovica Griffanti
Petya Kindalova
Fidel Alfaro-Almagro
Giovanna Zamboni
Peter M. Rothwell
Thomas E. Nichols
Mark Jenkinson
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Gaussian Predictive Process Models for Large Spatial Data Sets 2008 Sudipto Banerjee
Alan E. Gelfand
Andrew O. Finley
Huiyan Sang
2
+ Functional Generalized Linear Models with Images as Predictors 2009 Philip T. Reiss
R. Todd Ogden
2
+ PDF Chat Unsupervised domain adaptation for medical imaging segmentation with self-ensembling 2019 Christian S. Perone
Pedro J. Ballester
Rodrigo C. Barros
Julien Cohen‐Adad
2
+ Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation 2016 Konstantinos Kamnitsas
Christian Ledig
Virginia Newcombe
Joanna Simpson
Andrew D. Kane
David Menon
Daniel Rueckert
Ben Glocker
2
+ PDF Chat Generalized Multilevel Functional Regression 2009 Ciprian M. Crainiceanu
Ana‐Maria Staicu
Chongzhi Di
2
+ Analysis of multiple sclerosis lesions via spatially varying coefficients 2014 Tian Ge
Nicole Müller-Lenke
Kerstin Bendfeldt
Thomas E. Nichols
Timothy D. Johnson
2
+ PDF Chat Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets 2008 Cari G. Kaufman
Mark J. Schervish
Douglas Nychka
2
+ PDF Chat The Simplex Gradient and Noisy Optimization Problems 1998 David M. Bortz
C. T. Kelley
2
+ PDF Chat Space-varying regression models: specifications and simulation 2003 Dani Gamerman
Ajax Reynaldo Bello Moreira
Håvard Rue
2
+ Convergence Conditions for Ascent Methods 1969 Philip Wolfe
2
+ Permutation inference for the general linear model 2014 Anderson M. Winkler
Gerard R. Ridgway
Matthew Webster
Stephen M. Smith
Thomas E. Nichols
2
+ PDF Chat Automatic Brain Tumor Segmentation Using Cascaded Anisotropic Convolutional Neural Networks 2018 Guotai Wang
Wenqi Li
Sébastien Ourselin
Tom Vercauteren
1
+ Visualizing and Understanding Convolutional Neural Networks 2013 Matthew D. Zeiler
Rob Fergus
1
+ PDF Chat Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation 2018 Konstantinos Kamnitsas
Wenjia Bai
Enzo Ferrante
Steven McDonagh
Matthew Sinclair
Nick Pawlowski
Martin Rajchl
Min Young Lee
Bernhard Kainz
Daniel Rueckert
1
+ PDF Chat A Giant with Feet of Clay: On the Validity of the Data that Feed Machine Learning in Medicine 2018 Federico Cabitza
Davide Ciucci
Raffaele Rasoini
1
+ PDF Chat Practical Black-Box Attacks against Machine Learning 2017 Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
Somesh Jha
Z. Berkay Celik
Ananthram Swami
1
+ How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? 2015 Junghwan Cho
Kyewook Lee
Ellie Shin
Garry Choy
Synho Do
1
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
1
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
1
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
1
+ PDF Chat DeepNAT: Deep convolutional neural network for segmenting neuroanatomy 2017 Christian Wachinger
Martin Reuter
Tassilo Klein
1
+ What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 2017 Alex Kendall
Yarin Gal
1
+ PDF Chat Simultaneous Deep Transfer Across Domains and Tasks 2017 Judy Hoffman
Eric Tzeng
Trevor Darrell
Kate Saenko
1
+ PDF Chat Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation 2017 Lin Yang
Yizhe Zhang
Jianxu Chen
Siyuan Zhang
Danny Z. Chen
1
+ PDF Chat Why rankings of biomedical image analysis competitions should be interpreted with care 2018 Lena Maier‐Hein
Matthias Eisenmann
Annika Reinke
Sinan Onogur
Marko Stankovic
Patrick Scholz
Tal Arbel
Hrvoje Bogunović
Andrew P. Bradley
Aaron Carass
1
+ PDF Chat Discriminative Localization in CNNs for Weakly-Supervised Segmentation of Pulmonary Nodules 2017 Xinyang Feng
Jie Yang
Andrew F. Laine
Elsa D. Angelini
1
+ PDF Chat Unsupervised Domain Adaptation in Brain Lesion Segmentation with Adversarial Networks 2017 Konstantinos Kamnitsas
Christian F. Baumgartner
Christian Ledig
Virginia Newcombe
Joanna Simpson
Andrew D. Kane
David Menon
Aditya Nori
Antonio Criminisi
Daniel Rueckert
1
+ mixup: Beyond Empirical Risk Minimization 2017 Hongyi Zhang
Moustapha Cissé
Yann Dauphin
David López-Paz
1
+ Conditional Generative Adversarial Nets 2014 Mehdi Mirza
Simon Osindero
1
+ Visual Feature Attribution using Wasserstein GANs 2017 Christian F. Baumgartner
Lisa M. Koch
Kerem Can Tezcan
Jia Xi Ang
Ender Konukoğlu
1
+ Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning. 2016 Pavlo Molchanov
Stephen Tyree
Tero Karras
Timo Aila
Jan Kautz
1
+ PDF Chat Refacing: Reconstructing Anonymized Facial Features Using GANS 2019 David Abramian
Anders Eklund
1
+ PDF Chat Deep Learning with Differential Privacy 2016 Martı́n Abadi
Andy Chu
Ian Goodfellow
H. Brendan McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
1
+ Attention gated networks: Learning to leverage salient regions in medical images 2019 Jo Schlemper
Ozan Oktay
Michiel Schaap
Mattias P. Heinrich‬
Bernhard Kainz
Ben Glocker
Daniel Rueckert
1
+ Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks 2019 Guotai Wang
Wenqi Li
Michaël Aertsen
Jan Deprest
Sébastien Ourselin
Tom Vercauteren
1
+ PDF Chat Multi-institutional Deep Learning Modeling Without Sharing Patient Data: A Feasibility Study on Brain Tumor Segmentation 2019 Micah Sheller
G. Anthony Reina
Brandon Edwards
Jason Martin
Spyridon Bakas
1
+ Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge 2018 Spyridon Bakas
Mauricio Reyes
Enzo Battistella
Siddhartha Chandra
Huiguang He
Lucas Fidon
Maria Vakalopoulou
Roger Sun
et al.
Éric Deutsch
1
+ PDF Chat QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy 2018 Abhijit Guha Roy
Sailesh Conjeti
Nassir Navab
Christian Wachinger
1
+ PDF Chat Do Better ImageNet Models Transfer Better? 2019 Simon Kornblith
Jonathon Shlens
Quoc V. Le
1
+ Data-Efficient Image Recognition with Contrastive Predictive Coding 2019 Olivier J. Hénaff
Aravind Srinivas
Jeffrey De Fauw
Ali Razavi
Carl Doersch
S. M. Ali Eslami
Aäron van den Oord
1
+ Is Texture Predictive for Age and Sex in Brain MRI? 2019 Nick Pawlowski
Ben Glocker
1
+ PHiSeg: Capturing Uncertainty in Medical Image Segmentation 2019 Christian F. Baumgartner
Kerem Can Tezcan
Krishna Chaitanya
Andreas M. Hötker
Urs J. Muehlematter
Khoschy Schawkat
Anton S. Becker
Olivio F. Donati
Ender Konukoğlu
1
+ PDF Chat Privacy-Preserving Machine Learning: Threats and Solutions 2019 Mohammad Al-Rubaie
J. Morris Chang
1
+ Domain-Adversarial Training of Neural Networks 2015 Yaroslav Ganin
Evgeniya Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
Mario Marchand
Victor Lempitsky
1
+ Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation 2017 Lin Yang
Yizhe Zhang
Jianxu Chen
Siyuan Zhang
Danny Z. Chen
1
+ Sanity Checks for Saliency Maps 2018 Julius Adebayo
Justin Gilmer
Michael Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
1
+ PDF Chat 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation 2016 Özgün Çiçek
Ahmed Abdulkadir
Soeren S. Lienkamp
Thomas Brox
Olaf Ronneberger
1
+ The Impact of an Inter-rater Bias on Neural Network Training 2019 Or Shwartzman
Harel Gazit
Ilan Shelef
Tammy Riklin Raviv
1
+ PDF Chat Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification 2019 Moritz Böhle
Fabian Eitel
Martin Weygandt
Kerstin Ritter
1
+ DeepCut: Object Segmentation From Bounding Box Annotations Using Convolutional Neural Networks 2016 Martin Rajchl
Matthew C. H. Lee
Ozan Oktay
Konstantinos Kamnitsas
Jonathan Passerat‐Palmbach
Wenjia Bai
Mellisa Damodaram
Mary Rutherford
Joseph V. Hajnal
Bernhard Kainz
1