Dmitriy Pyrkin

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
1
+ PDF Chat Rethinking the Inception Architecture for Computer Vision 2016 Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ Overcoming catastrophic forgetting in neural networks 2017 James Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
Joel Veness
Guillaume Desjardins
Andrei A. Rusu
Kieran Milan
John Quan
Tiago Ramalho
Agnieszka Grabska‐Barwińska
1
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
1
+ Evolved Policy Gradients 2018 Rein Houthooft
Richard Y. Chen
Phillip Isola
Bradly C. Stadie
Filip Wolski
Jonathan Ho
Pieter Abbeel
1
+ HotFlip: White-Box Adversarial Examples for Text Classification 2018 Javid Ebrahimi
Anyi Rao
Daniel Lowd
Dejing Dou
1
+ fairseq: A Fast, Extensible Toolkit for Sequence Modeling. 2019 Myle Ott
Sergey Edunov
Alexei Baevski
Angela Fan
Sam Gross
Nathan Ng
David Grangier
Michael Auli
1
+ Adversarial Examples: Attacks and Defenses for Deep Learning 2019 Xiaoyong Yuan
Pan He
Qile Zhu
Xiaolin Li
1
+ Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) 2015 Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
1
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
1
+ PDF Chat Densely Connected Convolutional Networks 2017 Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
1
+ PDF Chat Super-convergence: very fast training of neural networks using large learning rates 2019 Leslie N. Smith
Nicholay Topin
1
+ signSGD: Compressed Optimisation for Non-Convex Problems 2018 Jeremy Bernstein
Yu-Xiang Wang
Kamyar Azizzadenesheli
Animashree Anandkumar
1
+ Learning to learn by gradient descent by gradient descent 2016 Marcin Andrychowicz
Misha Denil
Sergio Luis Suárez Gómez
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
1
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
1
+ Universal Adversarial Triggers for Attacking and Analyzing NLP 2019 Eric Wallace
Shi Feng
Nikhil Kandpal
Matt Gardner
Sameer Singh
1
+ ADADELTA: An Adaptive Learning Rate Method 2012 Matthew D. Zeiler
1