Ethan Sterling

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Techniques for interpretable machine learning 2019 Mengnan Du
Ninghao Liu
Xia Hu
3
+ Generalized Additive Models 1986 Trevor Hastie
Robert Tibshirani
3
+ PDF Chat Component selection and smoothing in multivariate nonparametric regression 2006 Yi Lin
Hao Helen Zhang
2
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
2
+ Learning Important Features Through Propagating Activation Differences 2017 Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
2
+ PDF Chat Axiomatic Interpretability for Multiclass Additive Models 2019 Xuezhou Zhang
Sarah Tan
Paul Koch
Yin Lou
Urszula Chajewska
Rich Caruana
2
+ PDF Chat High-dimensional additive modeling 2009 Lukas Meier
Sara van de Geer
Peter BĂŒhlmann
2
+ A comparison of methods for the fitting of generalized additive models 2007 Harald Binder
Gerhard Tutz
2
+ PDF Chat Sparse Partially Linear Additive Models 2015 Yin Lou
Jacob Bien
Rich Caruana
Johannes Gehrke
2
+ Beyond Sparsity: Tree Regularization of Deep Models for Interpretability 2017 Mike Wu
Michael C. Hughes
Sonali Parbhoo
Maurizio Zazzi
Volker Röth
Finale Doshi‐Velez
2
+ PDF Chat Accurate intelligible models with pairwise interactions 2013 Yin Lou
Rich Caruana
Johannes Gehrke
Giles Hooker
2
+ PDF Chat Sparse Additive Models 2009 Pradeep Ravikumar
John Lafferty
Han Liu
Larry Wasserman
2
+ The Frontiers of Fairness in Machine Learning 2018 Alexandra Chouldechova
Aaron Roth
2
+ Introducing LETOR 4.0 Datasets 2013 Tao Qin
Tieyan Liu
2
+ TF-Ranking 2019 Rama Kumar Pasumarthi
Sebastian Bruch
Xuanhui Wang
Cheng Li
Michael Bendersky
Marc Najork
Jan Pfeifer
Nadav Golbandi
Rohan Anil
S. Wolf
2
+ Is Attention Interpretable? 2019 Sofia Serrano
Noah A. Smith
1
+ "Why Should I Trust You?": Explaining the Predictions of Any Classifier 2016 Marco TĂșlio Ribeiro
Sameer Singh
Carlos Guestrin
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ PDF Chat Explaining Explanations: An Overview of Interpretability of Machine Learning 2018 Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
1
+ Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments 2017 Alexandra Chouldechova
1
+ Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead 2018 Cynthia Rudin
1
+ PDF Chat Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation 2018 Sarah Tan
Rich Caruana
Giles Hooker
Yin Lou
1
+ Interpretable Ranking with Generalized Additive Models 2021 Honglei Zhuang
Xuanhui Wang
Michael Bendersky
Alexander Grushetsky
Yonghui Wu
Petr Mitrichev
Ethan Sterling
Nathan Bell
Walker Ravina
Hai Qian
1
+ ADADELTA: An Adaptive Learning Rate Method 2012 Matthew D. Zeiler
1
+ Methods and Models for Interpretable Linear Classification 2014 Berk Ustun
Cynthia Rudin
1
+ Generalized Additive Model Selection 2015 Alexandra Chouldechova
Trevor Hastie
1
+ Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables 2007 Giles Hooker
1
+ Estimating regression models with unknown break‐points 2003 Vito M. R. Muggeo
1
+ “Why Should I Trust You?”: Explaining the Predictions of Any Classifier 2016 Marco Ribeiro
Sameer Singh
Carlos Guestrin
1
+ Towards A Rigorous Science of Interpretable Machine Learning 2017 Finale Doshi‐Velez
Been Kim
1
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ segmented: An R package to Fit Regression Models with Broken-Line Relationships 2008 Vito M. R. Muggeo
1
+ Manipulating and Measuring Model Interpretability 2018 Forough Poursabzi-Sangdeh
Daniel G. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna Wallach
1
+ Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning 2018 Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
1
+ Posthoc Interpretability of Learning to Rank Models using Secondary Training Data 2018 Jaspreet Singh
Avishek Anand
1
+ PDF Chat Data‐adaptive additive modeling 2018 Ashley Petersen
Daniela Witten
1
+ An Interpretable Model with Globally Consistent Explanations for Credit Risk 2018 Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
1