W D Watkins

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Neural network closures for nonlinear model order reduction 2018 Omer San
Romit Maulik
1
+ Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data 2017 Anuj Karpatne
Gowtham Atluri
James H. Faghmous
Michael Steinbach
Arindam Banerjee
Auroop R. Ganguly
Shashi Shekhar
Nagiza Samatova
Vipin Kumar
1
+ PDF Chat Data-assisted reduced-order modeling of extreme events in complex dynamical systems 2018 Zhong Wan
Pantelis R. Vlachas
Petros Koumoutsakos
Themistoklis P. Sapsis
1
+ PDF Chat Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks 2018 Frederik Kratzert
Daniel Klotz
Claire Brenner
Karsten Schulz
Mathew Herrnegger
1
+ PDF Chat Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets 2019 Frederik Kratzert
Daniel Klotz
Guy Shalev
GĂĽnter Klambauer
Sepp Hochreiter
Grey Nearing
1
+ PDF Chat Distributed long-term hourly streamflow predictions using deep learning – A case study for State of Iowa 2020 Zhongrun Xiang
Ä°brahim Demir
1
+ Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model 2020 Julien Brajard
Alberto Carrassi
Marc Bocquet
Laurent Bertino
1
+ PDF Chat A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists 2018 Chaopeng Shen
1
+ Uncertainty Estimation with Deep Learning for Rainfall–Runoff Modelling 2021 Daniel Klotz
Frederik Kratzert
Martin Gauch
Alden Keefe Sampson
J. Brandstetter
GĂĽnter Klambauer
Sepp Hochreiter
Grey Nearing
1
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
1
+ ADADELTA: An Adaptive Learning Rate Method 2012 Matthew D. Zeiler
1