Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Abdulrahman Karouma
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
A new class of efficient one-step contractivity preserving high-order time discretization methods of order 5 to 14
2017
Abdulrahman Karouma
Truong Nguyen-Ba
Thierry Giordano
RĂ©mi Vaillancourt
+
A Class of Contractivity Preserving Hermite-Birkhoff-Taylor High Order Time Discretization Methods
2015
Abdulrahman Karouma
+
Strong-stability-preserving, One-step, 9-stage, HermiteâBirkhoffâTaylor, Time-discretization Methods Combining Taylor and RK4 Methods
2012
Truong Nguyen-Ba
Abdulrahman Karouma
Thierry Giordano
RĂ©mi Vaillancourt
Common Coauthors
Coauthor
Papers Together
Thierry Giordano
2
Truong Nguyen-Ba
2
RĂ©mi Vaillancourt
2
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
VSVO formulation of the taylor method for the numerical solution of ODEs
2005
Roberto Barrio
Fernando Blesa
MartıÌn Lara
2
+
None
2003
Jens Hoefkens
Martin Berz
Kyoko Makino
2
+
High Order Strong Stability Preserving Time Discretizations
2008
Sigal Gottlieb
David I. Ketcheson
ChiâWang Shu
2
+
Efficient implementation of essentially non-oscillatory shock-capturing schemes, II
1989
ChiâWang Shu
Stanley Osher
2
+
Comparing Numerical Methods for Ordinary Differential Equations
1972
T. E. Hull
W. H. Enright
B. M. Fellen
A. E. Sedgwick
2
+
Preservation of adiabatic invariants under symplectic discretization
1999
Sebastian Reich
2
+
PDF
Chat
A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods
2005
Ăngel Jorba
Maorong Zou
2
+
Non-linear evolution using optimal fourth-order strong-stability-preserving RungeâKutta methods
2003
Raymond J. Spiteri
Steven J. Ruuth
2
+
N-body simulations
2006
P. W. Sharp
2
+
Validated solutions of initial value problems for ordinary differential equations
1999
Nedialko S. Nedialkov
Kenneth R. Jackson
George F. Corliss
2
+
PDF
Chat
Solving Ordinary Differential Equations Using Taylor Series
1982
George F. Corliss
YaoâFeng Chang
2
+
Strong stability preserving hybrid methods
2008
Chengming Huang
2
+
One-step 5-stage HermiteâBirkhoffâTaylor ODE solver of order 12
2009
Truong Nguyen-Ba
Hao Han
Hemza Yagoub
RĂ©mi Vaillancourt
2
+
Contractivity-preserving explicit HermiteâObrechkoff ODE solver of order 13
2013
Truong Nguyen-Ba
Steven J. Desjardins
P. W. Sharp
RĂ©mi Vaillancourt
2
+
Performance of the Taylor series method for ODEs/DAEs
2004
Roberto Barrio
2
+
High order embedded Runge-Kutta formulae
1981
P.J. Prince
John R. Dormand
2
+
Contractivity of Runge-Kutta methods
1991
J. F. B. M. Kraaijevanger
2
+
A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods
2002
Raymond J. Spiteri
Steven J. Ruuth
2
+
Numerical Methods for Ordinary Differential Systems: The Initial Value Problem
1991
J. D. Lambert
2
+
Strong-stability-preserving, One-step, 9-stage, HermiteâBirkhoffâTaylor, Time-discretization Methods Combining Taylor and RK4 Methods
2012
Truong Nguyen-Ba
Abdulrahman Karouma
Thierry Giordano
RĂ©mi Vaillancourt
2
+
Variable-step variable-order 3-stage Hermite-Birkhoff ODE solver of order 5 to 15 with a C++ program
2008
Yi Li
2
+
Computer solution of ordinary differential equations : the initial value problem
1975
L. F. Shampine
Marilyn K. Gordon
2
+
PDF
Chat
Numerical comparisons of some explicit Runge-Kutta pairs of orders 4 through 8
1991
P. W. Sharp
2
+
Automatic programming of recurrent power series
1999
MartıÌn Lara
A. Elipe
M. Palacios
2
+
Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations
2011
Sigal Gottlieb
David I. Ketcheson
ChiâWang Shu
1
+
PDF
Chat
Highly Efficient Strong Stability-Preserving RungeâKutta Methods with Low-Storage Implementations
2008
David I. Ketcheson
1
+
None
2002
Steven J. Ruuth
Raymond J. Spiteri
1
+
Three-stage Hermite-Birkhoff-Taylor ODE solver with a C++ program
2008
Vladan Bozic
1
+
None
2003
Sigal Gottlieb
Lee-Ad Gottlieb
1
+
Total-Variation-Diminishing Time Discretizations
1988
ChiâWang Shu
1
+
PDF
Chat
Solving ordinary differential equations I. nonstiff problems
1987
Ernst Hairer
Syvert P. NĂžrsett
Gerhard Wanner
1
+
Global optimization of explicit strong-stability-preserving Runge-Kutta methods
2005
Steven J. Ruuth
1
+
PDF
Chat
Low-storage, explicit RungeâKutta schemes for the compressible NavierâStokes equations
2000
Christopher Kennedy
Mark H. Carpenter
Robert Michael Lewis
1
+
Strong Stability-Preserving High-Order Time Discretization Methods
2001
Sigal Gottlieb
ChiâWang Shu
Eitan Tadmor
1
+
One-step strong-stability-preserving Hermite-Birkhoff-Taylor methods
2010
Truong Nguyen-Ba
Huong Nguyen-Thu
Thierry Giordano
RĂ©mi Vaillancourt
1
+
PDF
Chat
Monotonicity-Preserving Linear Multistep Methods
2003
Willem Hundsdorfer
Steven J. Ruuth
Raymond J. Spiteri
1
+
High-Order Strong-Stability-Preserving Runge--Kutta Methods with Downwind-Biased Spatial Discretizations
2004
Steven J. Ruuth
Raymond J. Spiteri
1
+
Families of Runge-Kutta-Nystrom Formulae
1987
John R. Dormand
Moawwad El-Mikkawy
P.J. Prince
1
+
New Runge-Kutta algorithms for numerical simulation in dynamical astronomy
1978
John R. Dormand
P.J. Prince
1
+
PDF
Chat
Efficient implementation of essentially non-oscillatory shock-capturing schemes
1988
ChiâWang Shu
Stanley Osher
1
+
High order explicit RungeâKutta Nyström pairs
2012
P. W. Sharp
Mohammad A. Qureshi
Kevin R. Grazier
1
+
Introduction to Nonlinear Differential and Integral Equations.
1964
P. E. Bedient
Harold T. Davis
1