Yuhuai Wu

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Evaluating language models for mathematics through interactions 2024 Katherine M. Collins
Albert Q. Jiang
Simon Frieder
Lionel Wong
Miri Zilka
Umang Bhatt
Thomas Lukasiewicz
Yuhuai Wu
Joshua B. Tenenbaum
William Hart
+ PDF Chat Don't Trust: Verify -- Grounding LLM Quantitative Reasoning with Autoformalization 2024 Jin Zhou
Charles Staats
Wenda Li
Christian Szegedy
Kilian Q. Weinberger
Yuhuai Wu
+ PDF Chat REFACTOR: Learning to Extract Theorems from Proofs 2024 Jin Zhou
Yuhuai Wu
Qiyang Li
Roger Grosse
+ Magnushammer: A Transformer-based Approach to Premise Selection 2023 Maciej Mikuła
Szymon Antoniak
Szymon Tworkowski
Albert Qiaochu Jiang
Jin Zhou
Christian Szegedy
Łukasz Kuciński
Piotr Miłoś
Yuhuai Wu
+ PaLM 2 Technical Report 2023 Rohan Anil
Andrew M. Dai
Orhan Fırat
Melvin Johnson
Dmitry Lepikhin
A. M. A. dos Passos
Siamak Shakeri
Emanuel Taropa
Paige Bailey
Zhifeng Chen
+ Lexinvariant Language Models 2023 Qian Huang
Eric Zelikman
Sarah Li Chen
Yuhuai Wu
Gregory Valiant
Percy Liang
+ Evaluating Language Models for Mathematics through Interactions 2023 Katherine M. Collins
Albert Q. Jiang
Simon Frieder
Lionel Wong
Miri Zilka
Umang Bhatt
Thomas Lukasiewicz
Yuhuai Wu
Joshua B. Tenenbaum
William E. Hart
+ Length Generalization in Arithmetic Transformers 2023 Samy Jelassi
Stéphane d’Ascoli
Carles Domingo-Enrich
Yuhuai Wu
Yuanzhi Li
François Charton
+ Focused Transformer: Contrastive Training for Context Scaling 2023 Szymon Tworkowski
Konrad Staniszewski
Mikołaj Pacek
Yuhuai Wu
Henryk Michalewski
Piotr Miłoś
+ PDF Chat Hierarchical Transformers Are More Efficient Language Models 2022 Piotr Nawrot
Szymon Tworkowski
Michał Tyrolski
Łukasz Kaiser
Yuhuai Wu
Christian Szegedy
Henryk Michalewski
+ Memorizing Transformers 2022 Yuhuai Wu
Markus N. Rabe
DeLesley Hutchins
Christian Szegedy
+ Block-Recurrent Transformers 2022 DeLesley Hutchins
Imanol Schlag
Yuhuai Wu
Ethan Dyer
Behnam Neyshabur
+ STaR: Bootstrapping Reasoning With Reasoning 2022 Eric Zelikman
Yuhuai Wu
Noah D. Goodman
+ Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers 2022 Albert Q. Jiang
Wenda Li
Szymon Tworkowski
Konrad Czechowski
Tomasz Odrzygóźdź
Piotr Miłoś
Yuhuai Wu
Mateja Jamnik
+ Fast and Precise: Adjusting Planning Horizon with Adaptive Subgoal Search 2022 Michał Zawalski
Michał Tyrolski
Konrad Czechowski
Damian Stachura
Piotr Piękos
Tomasz Odrzygóźdź
Yuhuai Wu
Łukasz Kuciński
Piotr Miłoś
+ Autoformalization with Large Language Models 2022 Yuhuai Wu
Albert Q. Jiang
Wenda Li
Markus N. Rabe
Charles Staats
Mateja Jamnik
Christian Szegedy
+ Insights into Pre-training via Simpler Synthetic Tasks 2022 Yuhuai Wu
Felix Li
Percy Liang
+ Solving Quantitative Reasoning Problems with Language Models 2022 Aitor Lewkowycz
Anders Andreassen
David Dohan
Ethan Dyer
Henryk Michalewski
Vinay Ramasesh
Ambrose Slone
Cem Anil
Imanol Schlag
Theo Gutman-Solo
+ Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs 2022 Albert Q. Jiang
Sean Welleck
Jin Zhou
Wenda Li
Jiacheng Liu
Mateja Jamnik
Timothée Lacroix
Yuhuai Wu
Guillaume Lample
+ Path Independent Equilibrium Models Can Better Exploit Test-Time Computation 2022 Cem Anil
Ashwini Pokle
Kaiqu Liang
Johannes Treutlein
Yuhuai Wu
Shaojie Bai
Zico Kolter
Roger Grosse
+ Holistic Evaluation of Language Models 2022 Percy Liang
Rishi Bommasani
Tong Lee
Dimitris Tsipras
Dilara Soylu
Michihiro Yasunaga
Yian Zhang
Deepak Narayanan
Yuhuai Wu
Ananya Kumar
+ Exploring Length Generalization in Large Language Models 2022 Cem Anil
Yuhuai Wu
Anders Andreassen
Aitor Lewkowycz
Vedant Misra
Vinay Ramasesh
Ambrose Slone
Guy Gur-Ari
Ethan Dyer
Behnam Neyshabur
+ Language Model Cascades 2022 David Dohan
Winnie Xu
Aitor Lewkowycz
Jacob Austin
David Bieber
Raphael Gontijo Lopes
Yuhuai Wu
Henryk Michalewski
Rif A. Saurous
Jascha Sohl‐Dickstein
+ Subgoal Search For Complex Reasoning Tasks 2021 Konrad Czechowski
Tomasz Odrzygóźdź
Marek Zbysiński
Michał Zawalski
Krzysztof Olejnik
Yuhuai Wu
Łukasz Kuciński
Piotr Miłoś
+ Learning to Give Checkable Answers with Prover-Verifier Games. 2021 Cem Anil
Guodong Zhang
Yuhuai Wu
Roger Grosse
+ Subgoal Search For Complex Reasoning Tasks 2021 Konrad Czechowski
Tomasz Odrzygóźdź
Marek Zbysiński
Michał Zawalski
Krzysztof Olejnik
Yuhuai Wu
Łukasz Kuciński
Piotr Miłoś
+ PDF Chat Learning Branching Heuristics for Propositional Model Counting 2021 Pashootan Vaezipoor
Gil Lederman
Yuhuai Wu
Chris J. Maddison
Roger Grosse
Sanjit A. Seshia
Fahiem Bacchus
+ INT: An Inequality Benchmark for Evaluating Generalization in Theorem Proving 2021 Yuhuai Wu
Albert Qiaochu Jiang
Jimmy Ba
Roger Grosse
+ Proof Artifact Co-training for Theorem Proving with Language Models. 2021 Jesse Michael Han
Jason Rute
Yuhuai Wu
Edward W. Ayers
Stanislas Polu
+ LIME: Learning Inductive Bias for Primitives of Mathematical Reasoning. 2021 Yuhuai Wu
Markus N. Rabe
Wenda Li
Jimmy Ba
Roger Grosse
Christian Szegedy
+ PDF Chat LIME: Learning Inductive Bias for Primitives of Mathematical Reasoning 2021 Yuhuai Wu
Markus Rabe
Wenda Li
Jimmy Ba
Roger Grosse
Christian Szegedy
+ Nonlinear Invariant Risk Minimization: A Causal Approach 2021 Chaochao Lu
Yuhuai Wu
José Miguel Hernández-Lobato
Bernhard Schölkopf
+ LIME: Learning Inductive Bias for Primitives of Mathematical Reasoning 2021 Yuhuai Wu
Markus N. Rabe
Wenda Li
Jimmy Ba
Roger Grosse
Christian Szegedy
+ On the Opportunities and Risks of Foundation Models 2021 Rishi Bommasani
Drew A. Hudson
Ehsan Adeli
Russ B. Altman
Simran Arora
Sydney von Arx
Michael S. Bernstein
Jeannette Bohg
Antoine Bosselut
Emma Brunskill
+ Hierarchical Transformers Are More Efficient Language Models 2021 Piotr Nawrot
Szymon Tworkowski
Michał Tyrolski
Łukasz Kaiser
Yuhuai Wu
Christian Szegedy
Henryk Michalewski
+ Learning to Give Checkable Answers with Prover-Verifier Games 2021 Cem Anil
Guodong Zhang
Yuhuai Wu
Roger Grosse
+ Subgoal Search For Complex Reasoning Tasks 2021 Konrad Czechowski
Tomasz Odrzygóźdź
Marek Zbysiński
Michał Zawalski
Krzysztof Olejnik
Yuhuai Wu
Łukasz Kuciński
Piotr Miłoś
+ Proof Artifact Co-training for Theorem Proving with Language Models 2021 Jesse Michael Han
Jason Rute
Yuhuai Wu
Edward W. Ayers
Stanislas Polu
+ Learning Branching Heuristics for Propositional Model Counting 2020 Pashootan Vaezipoor
Gil Lederman
Yuhuai Wu
Chris J. Maddison
Roger Grosse
Edward A. Lee
Sanjit A. Seshia
Fahiem Bacchus
+ Modelling High-Level Mathematical Reasoning in Mechanised Declarative Proofs 2020 Wenda Li
Yu Lei
Yuhuai Wu
Lawrence C. Paulson
+ PDF Chat Discrete Equidecomposability and Ehrhart Theory of Polygons 2020 Paxton Turner
Yuhuai Wu
+ INT: An Inequality Benchmark for Evaluating Generalization in Theorem Proving 2020 Yuhuai Wu
Albert Qiaochu Jiang
Jimmy Ba
Roger Grosse
+ The Scattering Compositional Learner: Discovering Objects, Attributes, Relationships in Analogical Reasoning 2020 Yuhuai Wu
Honghua Dong
Roger Grosse
Jimmy Ba
+ IsarStep: a Benchmark for High-level Mathematical Reasoning 2020 Wenda Li
Lei Yu
Yuhuai Wu
Lawrence C. Paulson
+ Learning Branching Heuristics for Propositional Model Counting 2020 Pashootan Vaezipoor
G. Lederman
Yuhuai Wu
Chris J. Maddison
Roger Grosse
Edward Lee
Sanjit A. Seshia
Fahiem Bacchus
+ ACTRCE: Augmenting Experience via Teacher's Advice For Multi-Goal Reinforcement Learning 2019 Harris Chan
Yuhuai Wu
Jamie Kiros
Sanja Fidler
Jimmy Ba
+ Concurrent Meta Reinforcement Learning 2019 Emilio Parisotto
Soham Ghosh
Sai Yalamanchi
Varsha Chinnaobireddy
Yuhuai Wu
Ruslan Salakhutdinov
+ Options as responses: Grounding behavioural hierarchies in multi-agent RL 2019 Alexander Sasha Vezhnevets
Yuhuai Wu
Rémi Leblond
Joel Z. Leibo
+ Understanding Short-Horizon Bias in Stochastic Meta-Optimization 2018 Yuhuai Wu
Mengye Ren
Renjie Liao
Roger Grosse
+ An Empirical Analysis of Proximal Policy Optimization with Kronecker-factored Natural Gradients 2018 Jiaming Song
Yuhuai Wu
+ Some Considerations on Learning to Explore via Meta-Reinforcement Learning 2018 Bradly C. Stadie
Ge Yang
Rein Houthooft
Xi Chen
Yan Duan
Yuhuai Wu
Pieter Abbeel
Ilya Sutskever
+ Understanding Short-Horizon Bias in Stochastic Meta-Optimization 2018 Yuhuai Wu
Mengye Ren
Renjie Liao
Roger Grosse
+ Backpropagation through the Void: Optimizing control variates for black-box gradient estimation 2017 Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
+ Sticking the Landing: An Asymptotically Zero-Variance Gradient Estimator for Variational Inference. 2017 Geoffrey Roeder
Yuhuai Wu
David Duvenaud
+ Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference 2017 Geoffrey Roeder
Yuhuai Wu
David Duvenaud
+ Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation 2017 Yuhuai Wu
Elman Mansimov
S. Matthew Liao
Roger Grosse
Jimmy Ba
+ Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference 2017 Geoffrey Roeder
Yuhuai Wu
David Duvenaud
+ Backpropagation through the Void: Optimizing control variates for black-box gradient estimation 2017 Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
+ On Multiplicative Integration with Recurrent Neural Networks 2016 Yuhuai Wu
Saizheng Zhang
Ying Zhang
Yoshua Bengio
Ruslan Salakhutdinov
+ Path-Normalized Optimization of Recurrent Neural Networks with ReLU Activations 2016 Behnam Neyshabur
Yuhuai Wu
Ruslan Salakhutdinov
Nathan Srebro
+ Architectural Complexity Measures of Recurrent Neural Networks 2016 Saizheng Zhang
Yuhuai Wu
Tong Che
Zhouhan Lin
Roland Memisevic
Ruslan Salakhutdinov
Yoshua Bengio
+ On the Quantitative Analysis of Decoder-Based Generative Models 2016 Yuhuai Wu
Yuri Burda
Ruslan Salakhutdinov
Roger Grosse
+ On Multiplicative Integration with Recurrent Neural Networks 2016 Yuhuai Wu
Saizheng Zhang
Ying Zhang
Yoshua Bengio
Russ R. Salakhutdinov
+ Path-Normalized Optimization of Recurrent Neural Networks with ReLU Activations 2016 Behnam Neyshabur
Yuhuai Wu
Ruslan Salakhutdinov
Nathan Srebro
+ Path-Normalized Optimization of Recurrent Neural Networks with ReLU Activations 2016 Behnam Neyshabur
Yuhuai Wu
Ruslan Salakhutdinov
Nathan Srebro
+ STDP as presynaptic activity times rate of change of postsynaptic activity 2015 Yoshua Bengio
Thomas Mesnard
Asja Fischer
Saizheng Zhang
Yuhuai Wu
+ Discrete Equidecomposability and Ehrhart Theory of Polygons 2014 Paxton Turner
Yuhuai Wu
+ Conditions for Discrete Equidecomposability of Polygons 2014 Paxton Turner
Yuhuai Wu
+ Discrete Equidecomposability and Ehrhart Theory of Polygons 2014 Paxton Turner
Yuhuai Wu
+ Estimation and testing in an imperfect-inspection model 1993 Muni S. Srivastava
Yuhuai Wu
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
10
+ Generative Language Modeling for Automated Theorem Proving. 2020 Stanislas Polu
Ilya Sutskever
8
+ Language Models are Few-Shot Learners 2020 T. B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
6
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
6
+ INT: An Inequality Benchmark for Evaluating Generalization in Theorem Proving 2021 Yuhuai Wu
Albert Qiaochu Jiang
Jimmy Ba
Roger Grosse
5
+ PDF Chat First Neural Conjecturing Datasets and Experiments 2020 Josef Urban
Jan Jakubův
5
+ Neural Machine Translation by Jointly Learning to Align and Translate 2015 Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
4
+ The minimum period of the Ehrhart quasi-polynomial of a rational polytope 2004 Tyrrell B. McAllister
Kevin M. Woods
4
+ PDF Chat TacticToe: Learning to Reason with HOL4 Tactics 2018 Thibault Gauthier
Cezary Kaliszyk
Josef Urban
4
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
4
+ PDF Chat fairseq: A Fast, Extensible Toolkit for Sequence Modeling 2019 Myle Ott
Sergey Edunov
Alexei Baevski
Angela Fan
Sam Gross
Nathan Ng
David Grangier
Michael Auli
4
+ Stochastic Backpropagation and Approximate Inference in Deep Generative Models 2014 Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
4
+ How Powerful are Graph Neural Networks? 2018 Keyulu Xu
Weihua Hu
Jure Leskovec
Stefanie Jegelka
4
+ Piecewise SL 2 Z Geometry 1993 Peter Greenberg
3
+ Modelling High-Level Mathematical Reasoning in Mechanised Declarative Proofs 2020 Wenda Li
Yu Lei
Yuhuai Wu
Lawrence C. Paulson
3
+ Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation 2017 Yuhuai Wu
Elman Mansimov
S. Matthew Liao
Roger Grosse
Jimmy Ba
3
+ Learning to Prove with Tactics 2018 Thibault Gauthier
Cezary Kaliszyk
Josef Urban
Ramana Kumar
Michael Norrish
3
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
3
+ On the Littlewood–Richardson polynomials 2002 Harm Derksen
Jerzy Weyman
3
+ PDF Chat The Bethe Ansatz and the combinatorics of Young tableaux 1988 A. N. Kirillov
Nicolai Reshetikhin
3
+ Algebraic topology 2001 Allen Hatcher
3
+ PDF Chat CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning 2017 Justin Johnson
Bharath Hariharan
Laurens van der Maaten
Li Fei-Fei
C. Lawrence Zitnick
Ross Girshick
3
+ PDF Chat Graph Representations for Higher-Order Logic and Theorem Proving 2020 Aditya Paliwal
Sarah M. Loos
Markus N. Rabe
Kshitij Bansal
Christian Szegedy
3
+ Evolution Strategies as a Scalable Alternative to Reinforcement Learning 2017 Tim Salimans
Jonathan Ho
Xi Chen
Ilya Sutskever
3
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
3
+ PDF Chat A FORMAL PROOF OF THE KEPLER CONJECTURE 2017 Thomas Hales
Mark Adams
Gertrud Bauer
TAT DAT DANG
John Harrison
Hoang Le Truong
Cezary Kaliszyk
Victor Magron
Sean McLaughlin
TAT THANG NGUYEN
3
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
3
+ PDF Chat SQuAD: 100,000+ Questions for Machine Comprehension of Text 2016 Pranav Rajpurkar
Jian Zhang
Konstantin Lopyrev
Percy Liang
3
+ Exploration of neural machine translation in autoformalization of mathematics in Mizar 2020 Qingxiang Wang
Chad E. Brown
Cezary Kaliszyk
Josef Urban
3
+ PDF Chat Vertices of Gelfand--Tsetlin Polytopes 2004 Jesús A. De Loera
Tyrrell B. McAllister
3
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ Lattice invariant valuations on rational polytopes 1978 Peter McMullen
3
+ PDF Chat Computing the continuous discretely: integer-point enumeration in polyhedra 2007 Matthias Beck
Sinai Robins
3
+ Learning-assisted theorem proving with millions of lemmas 2014 Cezary Kaliszyk
Josef Urban
3
+ Deep Learning for Symbolic Mathematics 2019 Guillaume Lample
François Charton
3
+ Generating Long Sequences with Sparse Transformers. 2019 Rewon Child
Scott Gray
Alec Radford
Ilya Sutskever
2
+ MASS: Masked Sequence to Sequence Pre-training for Language Generation 2019 Kaitao Song
Xu Tan
Tao Qin
Jianfeng Lu
Tie‐Yan Liu
2
+ Fast Graph Representation Learning with PyTorch Geometric 2019 Matthias Fey
Jan Eric Lenssen
2
+ Regularization and nonlinearities for neural language models: when are they needed? 2013 Marius Pachitariu
Maneesh Sahani
2
+ A Model Counter's Guide to Probabilistic Systems 2019 Marcell Vazquez-Chanlatte
Markus N. Rabe
Sanjit A. Seshia
2
+ Learning to Reason in Large Theories without Imitation 2021 Kshitij Bansal
Christian Szegedy
Markus N. Rabe
Sarah M. Loos
Viktor Toman
2
+ Hindsight Experience Replay 2017 Marcin Andrychowicz
Filip Wolski
Alex Ray
Jonas Schneider
Rachel Fong
Peter Welinder
Bob McGrew
Josh Tobin
Pieter Abbeel
Wojciech Zaremba
2
+ A Simple Way to Initialize Recurrent Networks of Rectified Linear Units 2015 Quoc V. Le
Navdeep Jaitly
Geoffrey E. Hinton
2
+ Representation Learning with Contrastive Predictive Coding 2018 Aäron van den Oord
Yazhe Li
Oriol Vinyals
2
+ Towards Finding Longer Proofs 2019 Zsolt Zombori
Adrián Csiszárik
Henryk Michalewski
Cezary Kaliszyk
Josef Urban
2
+ The Option-Critic Architecture 2016 Pierre‐Luc Bacon
Jean Harb
Doina Precup
2
+ RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning 2016 Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
2
+ DeepMath - Deep Sequence Models for Premise Selection 2016 Alex Alemi
François Chollet
Niklas Eén
Geoffrey Irving
Christian Szegedy
Josef Urban
2
+ Generating Sequences With Recurrent Neural Networks 2013 Alex Graves
2
+ HolStep: A Machine Learning Dataset for Higher-order Logic Theorem Proving 2017 Cezary Kaliszyk
François Chollet
Christian Szegedy
2