Stephan Wojtowytsch

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Momentum-based minimization of the Ginzburg-Landau functional on Euclidean spaces and graphs 2024 Oluwatosin Akande
Patrick Dondl
Kanan Gupta
Akwum Onwunta
Stephan Wojtowytsch
+ PDF Chat Solving the Poisson Equation with Dirichlet data by shallow ReLU$^\alpha$-networks: A regularity and approximation perspective 2024 Malhar Vaishampayan
Stephan Wojtowytsch
+ PDF Chat Nesterov acceleration in benignly non-convex landscapes 2024 Kanan Gupta
Stephan Wojtowytsch
+ PDF Chat A note on spatially inhomogeneous Cahn-Hilliard energies 2024 Stephan Wojtowytsch
+ PDF Chat SineNet: Learning Temporal Dynamics in Time-Dependent Partial Differential Equations 2024 Xuan Zhang
Jacob Helwig
Yuchao Lin
Yaochen Xie
Cong Fu
Stephan Wojtowytsch
Shuiwang Ji
+ A Qualitative Difference Between Gradient Flows of Convex Functions in Finite- and Infinite-Dimensional Hilbert Spaces 2024 Jonathan W. Siegel
Stephan Wojtowytsch
+ Stochastic Gradient Descent with Noise of Machine Learning Type Part II: Continuous Time Analysis 2023 Stephan Wojtowytsch
+ PDF Chat Stochastic Gradient Descent with Noise of Machine Learning Type Part I: Discrete Time Analysis 2023 Stephan Wojtowytsch
+ Achieving acceleration despite very noisy gradients 2023 Kanan Gupta
Jonathan H. Siegel
Stephan Wojtowytsch
+ Group Equivariant Fourier Neural Operators for Partial Differential Equations 2023 Jacob Helwig
Xuan Zhang
Cong Fu
Jerry Kurtin
Stephan Wojtowytsch
Shuiwang Ji
+ A qualitative difference between gradient flows of convex functions in finite- and infinite-dimensional Hilbert spaces 2023 Jonathan W. Siegel
Stephan Wojtowytsch
+ Minimum norm interpolation by perceptra: Explicit regularization and implicit bias 2023 Jiyoung Park
Ian Pelakh
Stephan Wojtowytsch
+ Qualitative neural network approximation over R and C: Elementary proofs for analytic and polynomial activation 2022 Josiah Park
Stephan Wojtowytsch
+ Optimal bump functions for shallow ReLU networks: Weight decay, depth separation and the curse of dimensionality 2022 Stephan Wojtowytsch
+ PDF Chat Connected Coulomb columns: analysis and numerics 2021 Patrick Dondl
Matteo Novaga
Stephan Wojtowytsch
Steve Wolff-Vorbeck
+ PDF Chat Kolmogorov width decay and poor approximators in machine learning: shallow neural networks, random feature models and neural tangent kernels 2021 E Weinan
Stephan Wojtowytsch
+ PDF Chat Keeping it together: A phase-field version of path-connectedness and its implementation 2021 Patrick Dondl
Stephan Wojtowytsch
+ PDF Chat On the Motion of Curved Dislocations in Three Dimensions: Simplified Linearized Elasticity 2021 Irene Fonseca
Janusz Ginster
Stephan Wojtowytsch
+ Stochastic gradient descent with noise of machine learning type. Part I: Discrete time analysis 2021 Stephan Wojtowytsch
+ Stochastic gradient descent with noise of machine learning type. Part II: Continuous time analysis 2021 Stephan Wojtowytsch
+ On the emergence of tetrahedral symmetry in the final and penultimate layers of neural network classifiers. 2020 E Weinan
Stephan Wojtowytsch
+ Some observations on partial differential equations in Barron and multi-layer spaces. 2020 E Weinan
Stephan Wojtowytsch
+ PDF Chat Can Shallow Neural Networks Beat the Curse of Dimensionality? A Mean Field Training Perspective 2020 Stephan Wojtowytsch
E Weinan
+ On the Convergence of Gradient Descent Training for Two-layer ReLU-networks in the Mean Field Regime 2020 Stephan Wojtowytsch
+ On the motion of curved dislocations in three dimensions: Simplified linearized elasticity 2020 Irene Fonseca
Janusz Ginster
Stephan Wojtowytsch
+ PDF Chat Confined elasticae and the buckling of cylindrical shells 2020 Stephan Wojtowytsch
+ Kolmogorov Width Decay and Poor Approximators in Machine Learning: Shallow Neural Networks, Random Feature Models and Neural Tangent Kernels 2020 E Weinan
Stephan Wojtowytsch
+ Can Shallow Neural Networks Beat the Curse of Dimensionality? A mean field training perspective 2020 Stephan Wojtowytsch
E Weinan
+ Representation formulas and pointwise properties for Barron functions 2020 E Weinan
Stephan Wojtowytsch
+ On the Banach spaces associated with multi-layer ReLU networks: Function representation, approximation theory and gradient descent dynamics 2020 E Weinan
Stephan Wojtowytsch
+ Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't 2020 E Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
+ A priori estimates for classification problems using neural networks 2020 E Weinan
Stephan Wojtowytsch
+ PDF Chat Towards a Mathematical Understanding of Neural Network-Based Machine Learning: What We Know and What We Don't 2020 Weinan E Weinan E
Chao Ma Chao
Lei Wu
Stephan Wojtowytsch
+ Some observations on high-dimensional partial differential equations with Barron data 2020 E Weinan
Stephan Wojtowytsch
+ On the Convergence of Gradient Descent Training for Two-layer ReLU-networks in the Mean Field Regime 2020 Stephan Wojtowytsch
+ On the motion of curved dislocations in three dimensions: Simplified linearized elasticity 2020 Irene Fonseca
Janusz Ginster
Stephan Wojtowytsch
+ On the emergence of simplex symmetry in the final and penultimate layers of neural network classifiers 2020 E Weinan
Stephan Wojtowytsch
+ PDF Chat On the boundary regularity of phase-fields for Willmore's energy 2018 Patrick Dondl
Stephan Wojtowytsch
+ Confined elasticae and the buckling of cylindrical shells 2018 Stephan Wojtowytsch
+ PDF Chat The Effect of Forest Dislocations on the Evolution of a Phase-Field Model for Plastic Slip 2018 Patrick Dondl
Matthias Kurzke
Stephan Wojtowytsch
+ Approximation of the relaxed perimeter functional under a connectedness constraint by phase-fields 2018 Patrick Dondl
Matteo Novaga
Benedikt Wirth
Stephan Wojtowytsch
+ Confined elasticae and the buckling of cylindrical shells 2018 Stephan Wojtowytsch
+ Keeping it together: a phase field version of path-connectedness and its implementation 2018 Patrick Dondl
Stephan Wojtowytsch
+ On the Boundary Regularity of Phase-Fields for Willmore's Energy 2017 Patrick Dondl
Stephan Wojtowytsch
+ PDF Chat Uniform regularity and convergence of phase-fields for Willmore’s energy 2017 Patrick Dondl
Stephan Wojtowytsch
+ Phase-field models for thin elastic structures : Willmore's energy and topological constraints 2017 Stephan Wojtowytsch
+ PDF Chat Helfrich’s energy and constrained minimisation 2017 Stephan Wojtowytsch
+ On the Boundary Regularity of Phase-Fields for Willmore's Energy 2017 Patrick Dondl
Stephan Wojtowytsch
+ PDF Chat Phase Field Models for Thin Elastic Structures with Topological Constraint 2016 Patrick Dondl
Antoine Lemenant
Stephan Wojtowytsch
+ Helfrich's Energy and Constrained Minimisation 2016 Stephan Wojtowytsch
+ Helfrich's Energy and Constrained Minimisation 2016 Stephan Wojtowytsch
+ Uniform Regularity and Convergence of Phase-Fields for Willmore's Energy 2015 Patrick Dondl
Stephan Wojtowytsch
+ Uniform Regularity and Convergence of Phase-Fields for Willmore's Energy 2015 Patrick Dondl
Stephan Wojtowytsch
+ PDF Chat On the Alexandrov Topology of sub-Lorentzian Manifolds 2014 Irina Markina
Stephan Wojtowytsch
+ On the Alexandrov Topology of sub-Lorentzian Manifolds 2013 Irina Markina
Stephan Wojtowytsch
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Phase Field Models for Thin Elastic Structures with Topological Constraint 2016 Patrick Dondl
Antoine Lemenant
Stephan Wojtowytsch
10
+ Barron Spaces and the Compositional Function Spaces for Neural Network Models. 2019 E Weinan
Chao Ma
Lei Wu
9
+ PDF Chat A comparative analysis of optimization and generalization properties of two-layer neural network and random feature models under gradient descent dynamics 2020 E Weinan
Chao Ma
Lei Wu
8
+ PDF Chat <i>A priori</i> estimates of the population risk for two-layer neural networks 2019 E Weinan
Chao Ma
Lei Wu
8
+ PDF Chat Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss 2020 Lénaïc Chizat
Francis Bach
8
+ PDF Chat Machine learning from a continuous viewpoint, I 2020 E Weinan
Chao Ma
Lei Wu
7
+ Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks 2019 Kaitong Hu
Zhenjie Ren
David Šiška
Łukasz Szpruch
5
+ PDF Chat On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport 2018 Lénaïc Chizat
Francis Bach
5
+ PDF Chat A mean field view of the landscape of two-layer neural networks 2018 Mei Song
Andrea Montanari
Phan-Minh Nguyen
5
+ Representation formulas and pointwise properties for Barron functions 2020 E Weinan
Stephan Wojtowytsch
5
+ PDF Chat Mean Field Analysis of Neural Networks: A Law of Large Numbers 2020 Justin Sirignano
Konstantinos Spiliopoulos
5
+ Kolmogorov Width Decay and Poor Approximators in Machine Learning: Shallow Neural Networks, Random Feature Models and Neural Tangent Kernels 2020 E Weinan
Stephan Wojtowytsch
5
+ A rigorous framework for the mean field limit of multilayer neural networks 2023 Phan-Minh Nguyen
Huy Tuan Pham
5
+ Functional Analysis, Sobolev Spaces and Partial Differential Equations 2010 Haı̈m Brezis
5
+ Measure Theory and Fine Properties of Functions 2018 Lawrence C. Evans
Ronald F. Garzepy
5
+ On the Banach spaces associated with multi-layer ReLU networks: Function representation, approximation theory and gradient descent dynamics 2020 E Weinan
Stephan Wojtowytsch
5
+ Can Shallow Neural Networks Beat the Curse of Dimensionality? A mean field training perspective 2020 Stephan Wojtowytsch
E Weinan
5
+ Neural Tangent Kernel: Convergence and Generalization in Neural Networks 2018 Arthur Paul Jacot
Franck Gabriel
Clément Hongler
5
+ Gradient Descent Provably Optimizes Over-parameterized Neural Networks 2018 Simon S. Du
Xiyu Zhai
Barnabás Póczos
Aarti Singh
4
+ Neural networks as Interacting Particle Systems: Asymptotic convexity of the Loss Landscape and Universal Scaling of the Approximation Error 2018 Grant M. Rotskoff
Eric Vanden‐Eijnden
4
+ Gradient Descent Provably Optimizes Over-parameterized Neural Networks 2018 Simon S. Du
Xiyu Zhai
Barnabás Póczos
Aarti Singh
4
+ Dynamics of Stochastic Gradient Algorithms 2015 Qianxiao Li
Cheng Tai
E Weinan
4
+ PDF Chat Approximation of Length Minimization Problems Among Compact Connected Sets 2015 Matthieu Bonnivard
Antoine Lemenant
Filippo Santambrogio
4
+ On Exact Computation with an Infinitely Wide Neural Net 2019 Sanjeev Arora
Simon S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
4
+ PDF Chat Uniform approximation of functions with random bases 2008 Ali Rahimi
Benjamin Recht
4
+ PDF Chat On the rate of convergence in Wasserstein distance of the empirical measure 2014 Nicolas Fournier
Arnaud Guillin
4
+ Analysis of the Gradient Descent Algorithm for a Deep Neural Network Model with Skip-connections. 2019 E Weinan
Chao Ma
Qingcan Wang
Lei Wu
4
+ On a Modified Conjecture of De Giorgi 2006 Matthias Röger
Reiner Schätzle
4
+ PDF Chat Elliptic Partial Differential Equations of Second Order 2001 David Gilbarg
Neil S. Trudinger
4
+ PDF Chat Kolmogorov width decay and poor approximators in machine learning: shallow neural networks, random feature models and neural tangent kernels 2021 E Weinan
Stephan Wojtowytsch
4
+ A singular perturbation problem with integral curvature bound 2007 Yuko Nagase
Yoshihiro Tonegawa
3
+ PDF Chat The Effect of Forest Dislocations on the Evolution of a Phase-Field Model for Plastic Slip 2018 Patrick Dondl
Matthias Kurzke
Stephan Wojtowytsch
3
+ PDF Chat On the diffusion approximation of nonconvex stochastic gradient descent 2019 Wenqing Hu
Chris Junchi Li
Lei Li
Jian‐Guo Liu
3
+ The loss landscape of overparameterized neural networks 2018 Yaim Cooper
3
+ Risk Bounds for High-dimensional Ridge Function Combinations Including Neural Networks 2016 Jason M. Klusowski
Andrew R. Barron
3
+ Optimal Transport for Applied Mathematicians : Calculus of Variations, PDEs, and Modeling 2015 Filippo Santambrogio
3
+ Gradient Flows: In Metric Spaces and in the Space of Probability Measures 2005 Luigi Ambrosio
Nicola Gigli
Giuseppe Savaré
3
+ On the Convergence of Gradient Descent Training for Two-layer ReLU-networks in the Mean Field Regime 2020 Stephan Wojtowytsch
3
+ Uniform convergence of a singular perturbation problem 1995 Luis Caffarelli
Antonio Cordóba
3
+ New surfaces of constant mean curvature 1993 Karsten Große-Brauckmann
3
+ The Variational Formulation of the Fokker--Planck Equation 1998 Richard W. Jordan
David Kinderlehrer
Félix Otto
3
+ PDF Chat Phase-field approximations of the Willmore functional and flow 2014 Élie Bretin
Simon Masnou
Èdouard Oudet
3
+ PDF Chat Confined Elastic Curves 2011 Patrick Dondl
Luca Mugnai
Matthias Röger
3
+ Trainability and Accuracy of Neural Networks: An Interacting Particle System Approach 2018 Grant M. Rotskoff
Eric Vanden‐Eijnden
3
+ A gradient bound and a liouville theorem for nonlinear poisson equations 1985 Luciano Modica
3
+ Approximation of functions 2017 George G. Lorentz
3
+ A mean-field limit for certain deep neural networks 2019 Dyego Carlos Souza Anacleto de Araújo
Roberto I. Oliveira
Daniel Yukimura
3
+ Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks 2019 Phan-Minh Nguyen
3
+ A Priori Estimates of the Population Risk for Residual Networks 2019 E Weinan
Chao Ma
Qingcan Wang
3
+ PDF Chat Uniform regularity and convergence of phase-fields for Willmore’s energy 2017 Patrick Dondl
Stephan Wojtowytsch
3