Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Yulin Wan
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Learning the Positions in CountSketch
2023
Simin Liu
Tianrui Liu
Ali Vakilian
Yulin Wan
David P. Woodruff
+
Extending and Improving Learned CountSketch
2020
Simin Liu
Tianrui Liu
Ali Vakilian
Yulin Wan
David P. Woodruff
+
Learning the Positions in CountSketch
2020
Simin Liu
Tianrui Liu
Ali Vakilian
Yulin Wan
David P. Woodruff
Common Coauthors
Coauthor
Papers Together
Ali Vakilian
3
David P. Woodruff
3
Tianrui Liu
3
Simin Liu
2
Simin Liu
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Hyperspectral Image Dataset for Benchmarking on Salient Object Detection
2018
Nevrez İmamoğlu
Yu Oishi
Xiaoqiang Zhang
Guanqun Ding
Yuming Fang
Toru Kouyama
Ryosuke Nakamura
2
+
Learning-Based Low-Rank Approximations
2019
Piotr Indyk
Ali Vakilian
Yuan Yang
2
+
PDF
Chat
NuMax: A Convex Approach for Learning Near-Isometric Linear Embeddings
2015
Chinmay Hegde
Aswin C. Sankaranarayanan
Wotao Yin
Richard G. Baraniuk
2
+
Composable Sketches for Functions of Frequencies: Beyond the Worst Case
2020
Edith Cohen
Ofir Geri
Rasmus Pagh
2
+
PDF
Chat
Low-Rank Approximation and Regression in Input Sparsity Time
2017
Kenneth L. Clarkson
David P. Woodruff
2
+
PDF
Chat
Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression
2013
Xiangrui Meng
Michael W. Mahoney
2
+
PDF
Chat
Performance of Johnson-Lindenstrauss transform for <i>k</i> -means and <i>k</i> -medians clustering
2019
Konstantin Makarychev
Yury Makarychev
Ilya Razenshteyn
2
+
PDF
Chat
Lower Bounds for Oblivious Subspace Embeddings
2014
Jelani Nelson
Huy L. Nguyễn
1
+
Introduction to the non-asymptotic analysis of random matrices
2010
Roman Vershynin
1
+
Limiting Form of the Sample Covariance Eigenspectrum in PCA and Kernel PCA
2003
David C. Hoyle
Magnus Rattray
1
+
A Randomized Algorithm for the Approximation of Matrices
2006
Per‐Gunnar Martinsson
Vladimir Rockhlin
Mark Tygert
1
+
Sketching as a Tool for Numerical Linear Algebra
2014
David P. Woodruff
1
+
Sharper Bounds for Regularized Data Fitting
2016
Haim Avron
Kenneth L. Clarkson
David P. Woodruff
1
+
Compressed Sensing using Generative Models
2017
Ashish Bora
Ajil Jalal
Eric Price
Alexandros G. Dimakis
1
+
A Survey on Learning to Hash
2016
Jingdong Wang
Ting Zhang
Jingkuan Song
Nicu Sebe
Heng Tao Shen
1
+
Randomized algorithms for matrices and data
2011
Michael W. Mahoney
1
+
(Learned) Frequency Estimation Algorithms under Zipfian Distribution
2019
Anders Aamand
Piotr Indyk
Ali Vakilian
1
+
PyTorch: An Imperative Style, High-Performance Deep Learning Library
2019
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+
PDF
Chat
A deep learning approach to structured signal recovery
2015
Ali Mousavi
Ankit Patel
Richard G. Baraniuk
1
+
Learning-based Support Estimation in Sublinear Time
2021
Talya Eden
Piotr Indyk
Shyam Narayanan
Ronitt Rubinfeld
Sandeep Silwal
Tal Wagner
1
+
PDF
Chat
On the distribution of the largest eigenvalue in principal components analysis
2001
Iain M. Johnstone
1
+
ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL
2007
Debashis Paul
1
+
Financial applications of random matrix theory: a short review
2015
Jean-Phillipe Bouchaud
Marc Potters
1
+
Extreme eigenvalues of sparse, heavy tailed random matrices
2016
Antonio Auffinger
Si Tang
1
+
Principal-component-analysis eigenvalue spectra from data with symmetry-breaking structure
2004
David C. Hoyle
Magnus Rattray
1
+
Robust regression using iteratively reweighted least-squares
1977
Paul W. Holland
Roy E. Welsch
1
+
Eigenvalues of large sample covariance matrices of spiked population models
2005
Jinho Baik
Jack W. Silverstein
1
+
PDF
Chat
OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings
2013
Jelani Nelson
Huy L. Nguyễn
1