Yulin Wan

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
Ali Vakilian 3
David P. Woodruff 3
Tianrui Liu 3
Simin Liu 2
Simin Liu 1
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Hyperspectral Image Dataset for Benchmarking on Salient Object Detection 2018 Nevrez İmamoğlu
Yu Oishi
Xiaoqiang Zhang
Guanqun Ding
Yuming Fang
Toru Kouyama
Ryosuke Nakamura
2
+ Learning-Based Low-Rank Approximations 2019 Piotr Indyk
Ali Vakilian
Yuan Yang
2
+ PDF Chat NuMax: A Convex Approach for Learning Near-Isometric Linear Embeddings 2015 Chinmay Hegde
Aswin C. Sankaranarayanan
Wotao Yin
Richard G. Baraniuk
2
+ Composable Sketches for Functions of Frequencies: Beyond the Worst Case 2020 Edith Cohen
Ofir Geri
Rasmus Pagh
2
+ PDF Chat Low-Rank Approximation and Regression in Input Sparsity Time 2017 Kenneth L. Clarkson
David P. Woodruff
2
+ PDF Chat Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression 2013 Xiangrui Meng
Michael W. Mahoney
2
+ PDF Chat Performance of Johnson-Lindenstrauss transform for <i>k</i> -means and <i>k</i> -medians clustering 2019 Konstantin Makarychev
Yury Makarychev
Ilya Razenshteyn
2
+ PDF Chat Lower Bounds for Oblivious Subspace Embeddings 2014 Jelani Nelson
Huy L. Nguyễn
1
+ Introduction to the non-asymptotic analysis of random matrices 2010 Roman Vershynin
1
+ Limiting Form of the Sample Covariance Eigenspectrum in PCA and Kernel PCA 2003 David C. Hoyle
Magnus Rattray
1
+ A Randomized Algorithm for the Approximation of Matrices 2006 Per‐Gunnar Martinsson
Vladimir Rockhlin
Mark Tygert
1
+ Sketching as a Tool for Numerical Linear Algebra 2014 David P. Woodruff
1
+ Sharper Bounds for Regularized Data Fitting 2016 Haim Avron
Kenneth L. Clarkson
David P. Woodruff
1
+ Compressed Sensing using Generative Models 2017 Ashish Bora
Ajil Jalal
Eric Price
Alexandros G. Dimakis
1
+ A Survey on Learning to Hash 2016 Jingdong Wang
Ting Zhang
Jingkuan Song
Nicu Sebe
Heng Tao Shen
1
+ Randomized algorithms for matrices and data 2011 Michael W. Mahoney
1
+ (Learned) Frequency Estimation Algorithms under Zipfian Distribution 2019 Anders Aamand
Piotr Indyk
Ali Vakilian
1
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+ PDF Chat A deep learning approach to structured signal recovery 2015 Ali Mousavi
Ankit Patel
Richard G. Baraniuk
1
+ Learning-based Support Estimation in Sublinear Time 2021 Talya Eden
Piotr Indyk
Shyam Narayanan
Ronitt Rubinfeld
Sandeep Silwal
Tal Wagner
1
+ PDF Chat On the distribution of the largest eigenvalue in principal components analysis 2001 Iain M. Johnstone
1
+ ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL 2007 Debashis Paul
1
+ Financial applications of random matrix theory: a short review 2015 Jean-Phillipe Bouchaud
Marc Potters
1
+ Extreme eigenvalues of sparse, heavy tailed random matrices 2016 Antonio Auffinger
Si Tang
1
+ Principal-component-analysis eigenvalue spectra from data with symmetry-breaking structure 2004 David C. Hoyle
Magnus Rattray
1
+ Robust regression using iteratively reweighted least-squares 1977 Paul W. Holland
Roy E. Welsch
1
+ Eigenvalues of large sample covariance matrices of spiked population models 2005 Jinho Baik
Jack W. Silverstein
1
+ PDF Chat OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings 2013 Jelani Nelson
Huy L. Nguyễn
1