Tamara Gerbert

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ On the difficulty of training Recurrent Neural Networks 2012 Razvan Pascanu
Tomáš Mikolov
Yoshua Bengio
1
+ PDF Chat Understanding deep image representations by inverting them 2015 Aravindh Mahendran
Andrea Vedaldi
1
+ PDF Chat Deep neural networks are easily fooled: High confidence predictions for unrecognizable images 2015 Anh‐Tu Nguyen
Jason Yosinski
Jeff Clune
1
+ PDF Chat Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation 2014 Ross Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
1
+ End-to-End Training of Deep Visuomotor Policies 2015 Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
1
+ PDF Chat LIII. <i>On lines and planes of closest fit to systems of points in space</i> 1901 Karl Pearson
1
+ PDF Chat Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates 2017 Shixiang Gu
Ethan Holly
Timothy Lillicrap
Sergey Levine
1
+ Towards A Rigorous Science of Interpretable Machine Learning 2017 Finale Doshi‐Velez
Been Kim
1
+ Learning Important Features Through Propagating Activation Differences 2017 Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
1
+ An Entropy-based Pruning Method for CNN Compression 2017 Jian-Hao Luo
Jianxin Wu
1
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
1
+ UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction 2018 Leland McInnes
John J. Healy
1
+ Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research 2018 Matthias Plappert
Marcin Andrychowicz
Alex Ray
Bob McGrew
Bowen Baker
Glenn Powell
Jonas Schneider
Josh Tobin
Maciek Chociej
Peter Welinder
1
+ A Dissection of Overfitting and Generalization in Continuous Reinforcement Learning 2018 Amy Zhang
Nicolas Ballas
Joëlle Pineau
1
+ Procedural Level Generation Improves Generality of Deep Reinforcement Learning 2018 Niels Justesen
Rubén Rodríguez Torrado
Philip Bontrager
Ahmed Khalifa
Julian Togelius
Sebastian Risi
1
+ Learning Dexterous In-Hand Manipulation 2018 OpenAI
1
+ Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience 2018 Yevgen Chebotar
Ankur Handa
Viktor Makoviychuk
Miles Macklin
Jan Issac
Nathan Ratliff
Dieter Fox
1
+ Assessing Generalization in Deep Reinforcement Learning 2018 Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krähenbühl
Vladlen Koltun
Dawn Song
1
+ Are Deep Policy Gradient Algorithms Truly Policy Gradient Algorithms 2018 Andrew Ilyas
Logan Engstrom
Shibani Santurkar
Dimitris Tsipras
Firdaus Janoos
Larry Rudolph
Aleksander Mądry
1
+ Rigorous Agent Evaluation: An Adversarial Approach to Uncover Catastrophic Failures. 2018 Jonathan Uesato
Ananya Kumar
Csaba Szepesvári
Tom Erez
Avraham Ruderman
Keith Anderson
Krishmamurthy
Dvijotham
Nicolas Heess
Pushmeet Kohli
1
+ Quantifying Generalization in Reinforcement Learning 2018 Karl Cobbe
Oleg Klimov
Chris Hesse
Taehoon Kim
John Schulman
1
+ Are All Layers Created Equal? 2019 Chiyuan Zhang
Samy Bengio
Yoram Singer
1
+ Investigating Generalisation in Continuous Deep Reinforcement Learning 2019 Chenyang Zhao
Olivier Sigaud
Freek Stulp
Timothy M. Hospedales
1
+ PDF Chat A Survey of Methods for Explaining Black Box Models 2018 Riccardo Guidotti
Anna Monreale
Salvatore Ruggieri
Franco Turini
Fosca Giannotti
Dino Pedreschi
1
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ PDF Chat Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping 2018 Konstantinos Bousmalis
Alex Irpan
Paul Wohlhart
Yunfei Bai
Matthew Kelcey
Mrinal Kalakrishnan
Laura Downs
Julian Ibarz
Peter Pástor
Kurt Konolige
1
+ Pruning Filters for Efficient ConvNets 2016 Hao Li
Asim Kadav
Igor Đurđanović
Hanan Samet
Hans Peter Graf
1
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
1
+ Towards Deep Learning Models Resistant to Adversarial Attacks. 2018 Aleksander Mądry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
1
+ Emergent Systematic Generalization in a Situated Agent 2019 Felix Hill
Andrew K. Lampinen
Rosalia Schneider
Stephen Clark
Matthew Botvinick
James L. McClelland
Adam Santoro
1
+ PDF Chat Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI 2019 Alejandro Barredo Arrieta
Natalia Díaz-Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
Alberto Barbado
Salvador García
Sergio Gil-López
Daniel Molina
Richard Benjamins
1
+ PDF Chat Learning dexterous in-hand manipulation 2019 OpenAI Marcin Andrychowicz
Bowen Baker
Maciek Chociej
Rafał Józefowicz
Bob McGrew
Jakub Pachocki
Arthur J Petron
Matthias Plappert
Glenn Powell
Alex Ray
1
+ Interestingness elements for explainable reinforcement learning: Understanding agents' capabilities and limitations 2020 Pedro Sequeira
Melinda Gervasio
1
+ PDF Chat DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning 2020 Théo Jaunet
Romain Vuillemot
Christian Wolf
1
+ PDF Chat Deep Reinforcement Learning: A Brief Survey 2017 Kai Arulkumaran
Marc Peter Deisenroth
Miles Brundage
Anil A. Bharath
1
+ PDF Chat Sim-to-Real Transfer of Robotic Control with Dynamics Randomization 2018 Xue Bin Peng
Marcin Andrychowicz
Wojciech Zaremba
Pieter Abbeel
1
+ PDF Chat An Introduction to Deep Reinforcement Learning 2018 Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joëlle Pineau
1
+ Counterfactual state explanations for reinforcement learning agents via generative deep learning 2021 Matthew Olson
Roli Khanna
Lawrence Neal
Fuxin Li
Weng‐Keen Wong
1
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+ Quantifying Generalization in Reinforcement Learning 2018 Karl Cobbe
О. В. Климов
Chris Hesse
Taehoon Kim
John Schulman
1
+ Hindsight Experience Replay 2017 Marcin Andrychowicz
Filip Wolski
Alex Ray
Jonas Schneider
Rachel H. Fong
Peter Welinder
Bob McGrew
Joshua W.D. Tobin
Pieter Abbeel
Wojciech Zaremba
1