Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Tamara Gerbert
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Analysing deep reinforcement learning agents trained with domain randomisation
2022
Tianhong Dai
Kai Arulkumaran
Tamara Gerbert
Samyakh Tukra
Feryal Behbahani
Anil A. Bharath
+
Analysing Deep Reinforcement Learning Agents Trained with Domain Randomisation
2019
Tianhong Dai
Kai Arulkumaran
Tamara Gerbert
Samyakh Tukra
Feryal Behbahani
Anil A. Bharath
Common Coauthors
Coauthor
Papers Together
Feryal Behbahani
2
Anil A. Bharath
2
Kai Arulkumaran
2
Samyakh Tukra
2
Tianhong Dai
1
Tianhong Dai
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
2015
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+
On the difficulty of training Recurrent Neural Networks
2012
Razvan Pascanu
Tomáš Mikolov
Yoshua Bengio
1
+
PDF
Chat
Understanding deep image representations by inverting them
2015
Aravindh Mahendran
Andrea Vedaldi
1
+
PDF
Chat
Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
2015
Anh‐Tu Nguyen
Jason Yosinski
Jeff Clune
1
+
PDF
Chat
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
2014
Ross Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
1
+
End-to-End Training of Deep Visuomotor Policies
2015
Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
1
+
PDF
Chat
LIII. <i>On lines and planes of closest fit to systems of points in space</i>
1901
Karl Pearson
1
+
PDF
Chat
Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates
2017
Shixiang Gu
Ethan Holly
Timothy Lillicrap
Sergey Levine
1
+
Towards A Rigorous Science of Interpretable Machine Learning
2017
Finale Doshi‐Velez
Been Kim
1
+
Learning Important Features Through Propagating Activation Differences
2017
Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
1
+
An Entropy-based Pruning Method for CNN Compression
2017
Jian-Hao Luo
Jianxin Wu
1
+
Proximal Policy Optimization Algorithms
2017
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
1
+
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
2018
Leland McInnes
John J. Healy
1
+
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research
2018
Matthias Plappert
Marcin Andrychowicz
Alex Ray
Bob McGrew
Bowen Baker
Glenn Powell
Jonas Schneider
Josh Tobin
Maciek Chociej
Peter Welinder
1
+
A Dissection of Overfitting and Generalization in Continuous Reinforcement Learning
2018
Amy Zhang
Nicolas Ballas
Joëlle Pineau
1
+
Procedural Level Generation Improves Generality of Deep Reinforcement Learning
2018
Niels Justesen
Rubén Rodríguez Torrado
Philip Bontrager
Ahmed Khalifa
Julian Togelius
Sebastian Risi
1
+
Learning Dexterous In-Hand Manipulation
2018
OpenAI
1
+
Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience
2018
Yevgen Chebotar
Ankur Handa
Viktor Makoviychuk
Miles Macklin
Jan Issac
Nathan Ratliff
Dieter Fox
1
+
Assessing Generalization in Deep Reinforcement Learning
2018
Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krähenbühl
Vladlen Koltun
Dawn Song
1
+
Are Deep Policy Gradient Algorithms Truly Policy Gradient Algorithms
2018
Andrew Ilyas
Logan Engstrom
Shibani Santurkar
Dimitris Tsipras
Firdaus Janoos
Larry Rudolph
Aleksander Mądry
1
+
Rigorous Agent Evaluation: An Adversarial Approach to Uncover Catastrophic Failures.
2018
Jonathan Uesato
Ananya Kumar
Csaba Szepesvári
Tom Erez
Avraham Ruderman
Keith Anderson
Krishmamurthy
Dvijotham
Nicolas Heess
Pushmeet Kohli
1
+
Quantifying Generalization in Reinforcement Learning
2018
Karl Cobbe
Oleg Klimov
Chris Hesse
Taehoon Kim
John Schulman
1
+
Are All Layers Created Equal?
2019
Chiyuan Zhang
Samy Bengio
Yoram Singer
1
+
Investigating Generalisation in Continuous Deep Reinforcement Learning
2019
Chenyang Zhao
Olivier Sigaud
Freek Stulp
Timothy M. Hospedales
1
+
PDF
Chat
A Survey of Methods for Explaining Black Box Models
2018
Riccardo Guidotti
Anna Monreale
Salvatore Ruggieri
Franco Turini
Fosca Giannotti
Dino Pedreschi
1
+
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
2013
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+
A Unified Approach to Interpreting Model Predictions
2017
Scott Lundberg
Su‐In Lee
1
+
PDF
Chat
Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping
2018
Konstantinos Bousmalis
Alex Irpan
Paul Wohlhart
Yunfei Bai
Matthew Kelcey
Mrinal Kalakrishnan
Laura Downs
Julian Ibarz
Peter Pástor
Kurt Konolige
1
+
Pruning Filters for Efficient ConvNets
2016
Hao Li
Asim Kadav
Igor Đurđanović
Hanan Samet
Hans Peter Graf
1
+
Asynchronous Methods for Deep Reinforcement Learning
2016
Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
1
+
Towards Deep Learning Models Resistant to Adversarial Attacks.
2018
Aleksander Mądry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
1
+
Emergent Systematic Generalization in a Situated Agent
2019
Felix Hill
Andrew K. Lampinen
Rosalia Schneider
Stephen Clark
Matthew Botvinick
James L. McClelland
Adam Santoro
1
+
PDF
Chat
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
2019
Alejandro Barredo Arrieta
Natalia Díaz-Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
Alberto Barbado
Salvador García
Sergio Gil-López
Daniel Molina
Richard Benjamins
1
+
PDF
Chat
Learning dexterous in-hand manipulation
2019
OpenAI Marcin Andrychowicz
Bowen Baker
Maciek Chociej
Rafał Józefowicz
Bob McGrew
Jakub Pachocki
Arthur J Petron
Matthias Plappert
Glenn Powell
Alex Ray
1
+
Interestingness elements for explainable reinforcement learning: Understanding agents' capabilities and limitations
2020
Pedro Sequeira
Melinda Gervasio
1
+
PDF
Chat
DRLViz: Understanding Decisions and Memory in Deep Reinforcement Learning
2020
Théo Jaunet
Romain Vuillemot
Christian Wolf
1
+
PDF
Chat
Deep Reinforcement Learning: A Brief Survey
2017
Kai Arulkumaran
Marc Peter Deisenroth
Miles Brundage
Anil A. Bharath
1
+
PDF
Chat
Sim-to-Real Transfer of Robotic Control with Dynamics Randomization
2018
Xue Bin Peng
Marcin Andrychowicz
Wojciech Zaremba
Pieter Abbeel
1
+
PDF
Chat
An Introduction to Deep Reinforcement Learning
2018
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joëlle Pineau
1
+
Counterfactual state explanations for reinforcement learning agents via generative deep learning
2021
Matthew Olson
Roli Khanna
Lawrence Neal
Fuxin Li
Weng‐Keen Wong
1
+
PyTorch: An Imperative Style, High-Performance Deep Learning Library
2019
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+
Quantifying Generalization in Reinforcement Learning
2018
Karl Cobbe
О. В. Климов
Chris Hesse
Taehoon Kim
John Schulman
1
+
Hindsight Experience Replay
2017
Marcin Andrychowicz
Filip Wolski
Alex Ray
Jonas Schneider
Rachel H. Fong
Peter Welinder
Bob McGrew
Joshua W.D. Tobin
Pieter Abbeel
Wojciech Zaremba
1