Cédric Archambeau

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Hyperparameter Optimization in Machine Learning 2024 Luca Franceschi
Michele Donini
Valerio Perrone
Aaron Klein
Cédric Archambeau
Matthias Seeger
Massimiliano Pontil
Paolo Frasconi
+ PDF Chat Structural Pruning of Pre-trained Language Models via Neural Architecture Search 2024 Aaron Klein
Jacek Gołębiowski
Xingchen Ma
Valerio Perrone
Cédric Archambeau
+ PDF Chat Explaining Probabilistic Models with Distributional Values 2024 Luca Franceschi
Michele Donini
Cédric Archambeau
Matthias Seeger
+ Fortuna: A Library for Uncertainty Quantification in Deep Learning 2023 Gianluca Detommaso
Alberto Gasparin
Michele Donini
Matthias Seeger
Andrew Gordon Wilson
Cédric Archambeau
+ Renate: A Library for Real-World Continual Learning 2023 Martin Wistuba
Martin Ferianc
Lukas Balles
Cédric Archambeau
Giovanni Zappella
+ Optimizing Hyperparameters with Conformal Quantile Regression 2023 David Salinas
Jacek Gołębiowski
Aaron Klein
Matthias Seeger
Cédric Archambeau
+ Geographical Erasure in Language Generation 2023 Pola Schwöbel
Jacek Gołębiowski
Michele Donini
Cédric Archambeau
Danish Pruthi
+ Geographical Erasure in Language Generation 2023 Pola Schwöbel
Jacek Gołębiowski
Michele Donini
Cédric Archambeau
Danish Pruthi
+ A Negative Result on Gradient Matching for Selective Backprop 2023 Lukas Balles
Cédric Archambeau
Giovanni Zappella
+ PDF Chat Continual Learning with Transformers for Image Classification 2022 Beyza Ermiş
Giovanni Zappella
Martin Wistuba
Aditya Rawal
Cédric Archambeau
+ Diverse Counterfactual Explanations for Anomaly Detection in Time Series 2022 Déborah Sulem
Michele Donini
Muhammad Bilal Zafar
François-Xavier Aubet
Jan Gasthaus
Tim Januschowski
Sanjiv Ranjan Das
Krishnaram Kenthapadi
Cédric Archambeau
+ Gradient-Matching Coresets for Rehearsal-Based Continual Learning 2022 Lukas Balles
Giovanni Zappella
Cédric Archambeau
+ Memory Efficient Continual Learning with Transformers 2022 Beyza Ermiş
Giovanni Zappella
Martin Wistuba
Cédric Archambeau
+ Continual Learning with Transformers for Image Classification 2022 Beyza Ermiş
Giovanni Zappella
Martin Wistuba
Aditya Rawal
Cédric Archambeau
+ Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors 2022 Gianluca Detommaso
Alberto Gasparin
A. S. Wilson
Cédric Archambeau
+ Private Synthetic Data for Multitask Learning and Marginal Queries 2022 Giuseppe Vietri
Cédric Archambeau
Sergül Aydöre
William Brown
Michael Kearns
Aaron Roth
Ankit Siva
Shuai Tang
Zhiwei Steven Wu
+ PASHA: Efficient HPO and NAS with Progressive Resource Allocation 2022 Ondrej Bohdal
Lukas Balles
Beyza Ermiş
Cédric Archambeau
Giovanni Zappella
+ PDF Chat Gradient-matching coresets for continual learning 2021 Lukas Balles
Giovanni Zappella
Cédric Archambeau
+ Meta-Forecasting by combining Global Deep Representations with Local Adaptation. 2021 Riccardo Grazzi
Valentín Flunkert
David Salinas
Tim Januschowski
Matthias Seeger
Cédric Archambeau
+ PDF Chat Meta-Forecasting by combining Global Deep Representations with Local Adaptation 2021 Riccardo Grazzi
Valentín Flunkert
David Salinas
Tim Januschowski
Matthias Seeger
Cédric Archambeau
+ Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization 2021 Valerio Perrone
Huibin Shen
Aida Zolic
Iaroslav Shcherbatyi
Amr Ahmed
Tanya Bansal
Michele Donini
Fela Winkelmolen
Rodolphe Jenatton
Jean Baptiste Faddoul
+ Fair Bayesian Optimization 2021 Valerio Perrone
Michele Donini
Muhammad Bilal Zafar
Robin Schmucker
Krishnaram Kenthapadi
Cédric Archambeau
+ A multi-objective perspective on jointly tuning hardware and hyperparameters. 2021 David Salinas
Valerio Perrone
Olivier Cruchant
Cédric Archambeau
+ On the Lack of Robust Interpretability of Neural Text Classifiers 2021 Muhammad Bilal Zafar
Michele Donini
Dylan Slack
Cédric Archambeau
Sanjiv Ranjan Das
Krishnaram Kenthapadi
+ Overfitting in Bayesian optimization: An empirical study and early-stopping solution 2021 Anastasia Makarova
Huibin Shen
Valerio Perrone
Aaron Klein
Jean Baptiste Faddoul
Andreas Krause
Matthias Seeger
Cédric Archambeau
+ Hyperparameter Transfer Learning with Adaptive Complexity 2021 Samuel Horváth
Aaron Klein
Peter Richtárik
Cédric Archambeau
+ BORE: Bayesian Optimization by Density-Ratio Estimation 2021 Louis C. Tiao
Aaron Klein
Matthias Seeger
Edwin V. Bonilla
Cédric Archambeau
Fábio Ramos
+ A resource-efficient method for repeated HPO and NAS problems 2021 Giovanni Zappella
David Salinas
Cédric Archambeau
+ BORE: Bayesian Optimization by Density-Ratio Estimation 2021 Chi-Chun Tiao
Aaron Klein
Matthias Seeger
Edwin V. Bonilla
Cédric Archambeau
Fábio Ramos
+ Multi-objective Asynchronous Successive Halving 2021 Robin Schmucker
Michele Donini
Muhammad Bilal Zafar
David Salinas
Cédric Archambeau
+ On the Lack of Robust Interpretability of Neural Text Classifiers 2021 Muhammad Bilal Zafar
Michele Donini
Dylan Slack
Cédric Archambeau
Sanjiv Ranjan Das
Krishnaram Kenthapadi
+ More Than Words: Towards Better Quality Interpretations of Text Classifiers 2021 Muhammad Bilal Zafar
Philipp Schmidt
Michele Donini
Cédric Archambeau
Felix Bießmann
Sanjiv Ranjan Das
Krishnaram Kenthapadi
+ A multi-objective perspective on jointly tuning hardware and hyperparameters 2021 David Salinas
Valerio Perrone
Olivier Cruchant
Cédric Archambeau
+ On the Lack of Robust Interpretability of Neural Text Classifiers 2021 Muhammad Bilal Zafar
Michele Donini
Dylan Slack
Cédric Archambeau
Sanjiv Ranjan Das
Krishnaram Kenthapadi
+ Automatic Termination for Hyperparameter Optimization 2021 Anastasia Makarova
Huibin Shen
Valerio Perrone
Aaron Klein
Jean Baptiste Faddoul
Andreas Krause
Matthias Seeger
Cédric Archambeau
+ Hyperparameter Transfer Learning with Adaptive Complexity 2021 Samuel Horváth
Aaron Klein
Peter Richtárik
Cédric Archambeau
+ Meta-Forecasting by combining Global Deep Representations with Local Adaptation 2021 Riccardo Grazzi
Valentín Flunkert
David Salinas
Tim Januschowski
Matthias Seeger
Cédric Archambeau
+ Gradient-matching coresets for continual learning 2021 Lukas Balles
Giovanni Zappella
Cédric Archambeau
+ Amazon SageMaker Automatic Model Tuning: Scalable Black-box Optimization 2020 Valerio Perrone
Huibin Shen
Aida Zolic
Iaroslav Shcherbatyi
Amr Ahmed
Tanya Bansal
Michele Donini
Fela Winkelmolen
Rodolphe Jenatton
Jean Baptiste Faddoul
+ Amazon SageMaker Autopilot: a white box AutoML solution at scale 2020 Piali Das
Valerio Perrone
Nikita Ivkin
Tanya Bansal
Zohar Karnin
Huibin Shen
Iaroslav Shcherbatyi
Yotam Elor
Wilton Wu
Aida Zolic
+ Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization 2020 Valerio Perrone
Huibin Shen
Aida Zolic
Iaroslav Shcherbatyi
Amr Ahmed
Tanya Bansal
Michele Donini
Fela Winkelmolen
Rodolphe Jenatton
Jean Baptiste Faddoul
+ Pareto-efficient acquisition functions for cost-aware Bayesian optimization 2020 Gauthier Guinet
Valerio Perrone
Cédric Archambeau
+ Fair Bayesian Optimization 2020 Valerio Perrone
Michele Donini
Muhammad Bilal Zafar
Robin Schmucker
Krishnaram Kenthapadi
Cédric Archambeau
+ LEEP: A New Measure to Evaluate Transferability of Learned Representations 2020 Cuong V. Nguyen
Tal Hassner
Matthias Seeger
Cédric Archambeau
+ Cost-aware Bayesian Optimization 2020 Eric Hans Lee
Valerio Perrone
Cédric Archambeau
Matthias Seeger
+ Model-based Asynchronous Hyperparameter and Neural Architecture Search 2020 Aaron Klein
Louis C. Tiao
Thibaut Lienart
Cédric Archambeau
Matthias Seeger
+ Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization 2020 Valerio Perrone
Huibin Shen
Aida Zolic
Iaroslav Shcherbatyi
Amr Ahmed
Tanya Bansal
Michele Donini
Fela Winkelmolen
Rodolphe Jenatton
Jean Baptiste Faddoul
+ Amazon SageMaker Autopilot: a white box AutoML solution at scale 2020 Piali Das
Valerio Perrone
Nikita Ivkin
Tanya Bansal
Zohar Karnin
Huibin Shen
Iaroslav Shcherbatyi
Yotam Elor
Wilton Wu
Aida Zolic
+ Fair Bayesian Optimization 2020 Valerio Perrone
Michele Donini
Muhammad Bilal Zafar
Robin Schmucker
Krishnaram Kenthapadi
Cédric Archambeau
+ Pareto-efficient Acquisition Functions for Cost-Aware Bayesian Optimization 2020 Gauthier Guinet
Valerio Perrone
Cédric Archambeau
+ Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning 2019 Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
+ Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning 2019 Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
+ Constrained Bayesian Optimization with Max-Value Entropy Search 2019 Valerio Perrone
Iaroslav Shcherbatyi
Rodolphe Jenatton
Cédric Archambeau
Matthias Seeger
+ Constrained Bayesian Optimization with Max-Value Entropy Search 2019 Valerio Perrone
Iaroslav Shcherbatyi
Rodolphe Jenatton
Cédric Archambeau
Matthias Seeger
+ Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning 2019 Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
+ An interpretable latent variable model for attribute applicability in the Amazon catalogue 2017 Tammo Rukat
Dustin Lange
Cédric Archambeau
+ Multiple Adaptive Bayesian Linear Regression for Scalable Bayesian Optimization with Warm Start 2017 Valerio Perrone
Rodolphe Jenatton
Matthias Seeger
Cédric Archambeau
+ An interpretable latent variable model for attribute applicability in the Amazon catalogue 2017 Tammo Rukat
Dustin Lange
Cédric Archambeau
+ Online optimization and regret guarantees for non-additive long-term constraints 2016 Rodolphe Jenatton
Jim Huang
Dominik Csiba
Cédric Archambeau
+ Online Inference for Relation Extraction with a Reduced Feature Set 2015 Maxim Rabinovich
Cédric Archambeau
+ Adaptive Algorithms for Online Convex Optimization with Long-term Constraints 2015 Rodolphe Jenatton
Jim Huang
Cédric Archambeau
+ Incremental Variational Inference for Latent Dirichlet Allocation 2015 Cédric Archambeau
Beyza Ermiş
+ Overlapping Trace Norms in Multi-View Learning 2014 Behrouz Behmardi
Cédric Archambeau
Guillaume Bouchard
+ Plackett-Luce regression: A new Bayesian model for polychotomous data 2012 Cédric Archambeau
François Caron
+ Approximate inference for continuous-time Markov processes 2011 Cédric Archambeau
Manfred Opper
+ Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions 2011 Yuan Shen
Dan Cornford
Manfred Opper
Cédric Archambeau
+ Multiple Gaussian Process Models 2011 Cédric Archambeau
Francis Bach
+ Improving the Robustness to Outliers of Mixtures of Probabilistic PCAs 2008 Nicolas Delannay
Cédric Archambeau
Michel Verleysen
+ PDF Chat Mixtures of robust probabilistic principal component analyzers 2008 Cédric Archambeau
Nicolas Delannay
Michel Verleysen
+ Variational Inference for Diffusion Processes 2007 Cédric Archambeau
Manfred Opper
Yuan Shen
Dan Cornford
John Shawe‐Taylor
+ PDF Chat Robust Bayesian clustering 2006 Cédric Archambeau
Michel Verleysen
+ Assessment of probability density estimation methods: Parzen window and finite Gaussian mixtures 2006 Cédric Archambeau
Maurizio Valle
Alex Assenza
Michel Verleysen
+ PDF Chat Robust probabilistic projections 2006 Cédric Archambeau
Nicolas Delannay
Michel Verleysen
+ Flexible and Robust Bayesian Classification by Finite Mixture Models 2004 Cédric Archambeau
Frédéric Vrins
Michel Verleysen
+ Fully nonparametric probability density function estimation with finite Gaussian mixture models 2003 Cédric Archambeau
Michel Verleysen
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Max-value Entropy Search for Efficient Bayesian Optimization 2017 Zi Wang
Stefanie Jegelka
9
+ Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm 1977 A. P. Dempster
N. M. Laird
Donald B. Rubin
8
+ Practical Bayesian Optimization of Machine Learning Algorithms 2012 Jasper Snoek
Hugo Larochelle
Ryan P. Adams
8
+ Pattern Recognition and Machine Learning 2007 Christopher Bishop
6
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
6
+ PDF Chat Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting 2012 Niranjan Srinivas
Andreas Krause
Sham M. Kakade
Matthias Seeger
5
+ Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning 2019 Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
5
+ Predictive Entropy Search for Efficient Global Optimization of Black-box Functions 2014 José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
5
+ XGBoost 2016 Tianqi Chen
Carlos Guestrin
5
+ Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization 2019 Aaron Klein
Frank Hutter
5
+ Scalable Bayesian Optimization Using Deep Neural Networks 2015 Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
Nadathur Satish
Narayanan Sundaram
Mostofa Patwary
Prabhat
Ryan P. Adams
5
+ PDF Chat OpenML 2014 Joaquin Vanschoren
Jan N. van Rijn
Bernd Bischl
Luı́s Torgo
5
+ None 2000 David Peel
Geoffrey J. McLachlan
5
+ Fair Bayesian Optimization 2021 Valerio Perrone
Michele Donini
Muhammad Bilal Zafar
Robin Schmucker
Krishnaram Kenthapadi
Cédric Archambeau
4
+ Freeze-Thaw Bayesian Optimization 2014 Kevin Swersky
Jasper Snoek
Ryan P. Adams
4
+ Constrained Bayesian Optimization with Max-Value Entropy Search 2019 Valerio Perrone
Iaroslav Shcherbatyi
Rodolphe Jenatton
Cédric Archambeau
Matthias Seeger
4
+ NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search 2020 Xuanyi Dong
Yi Yang
4
+ A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning 2010 Eric Brochu
Vlad M. Cora
Nando de Freitas
4
+ Cost-aware Bayesian Optimization 2020 Eric Hans Lee
Valerio Perrone
Cédric Archambeau
Matthias Seeger
4
+ MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems 2015 Tianqi Chen
Mu Li
Yutian Li
Min Lin
Naiyan Wang
Minjie Wang
Tianjun Xiao
Bing Xu
Chiyuan Zhang
Zheng Zhang
3
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ Mitigating Unwanted Biases with Adversarial Learning 2018 Brian Hu Zhang
Blake Lemoine
Margaret Mitchell
3
+ Pareto-efficient acquisition functions for cost-aware Bayesian optimization 2020 Gauthier Guinet
Valerio Perrone
Cédric Archambeau
3
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
3
+ PDF Chat Exact and Computationally Efficient Likelihood-Based Estimation for Discretely Observed Diffusion Processes (with Discussion) 2006 Alexandros Beskos
Omiros Papaspiliopoulos
Gareth O. Roberts
Paul Fearnhead
3
+ AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data. 2020 Nick Erickson
Jonas Mueller
Alexander Shirkov
Hang Zhang
Pedro Larroy
Mu Li
Alexander J. Smola
3
+ EM Algorithms for PCA and SPCA 1997 Sam T. Roweis
3
+ PDF Chat Certifying and Removing Disparate Impact 2015 Michael Feldman
Sorelle A. Friedler
John Moeller
Carlos Scheidegger
Suresh Venkatasubramanian
3
+ PDF Chat Fairness through awareness 2012 Cynthia Dwork
Moritz Hardt
Toniann Pitassi
Omer Reingold
Richard S. Zemel
3
+ Input Warping for Bayesian Optimization of Non-stationary Functions 2014 Jasper Snoek
Kevin Swersky
Richard S. Zemel
Ryan P. Adams
3
+ A Tutorial on Bayesian Optimization 2018 Peter I. Frazier
3
+ On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm 2001 Gareth O. Roberts
3
+ Multiple Adaptive Bayesian Linear Regression for Scalable Bayesian Optimization with Warm Start 2017 Valerio Perrone
Rodolphe Jenatton
Matthias Seeger
Cédric Archambeau
3
+ Decoupled Weight Decay Regularization 2017 Ilya Loshchilov
Frank Hutter
3
+ A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants 1998 Radford M. Neal
Geoffrey E. Hinton
3
+ Robust principal component analysis by self-organizing rules based on statistical physics approach 1995 Lei Xu
Alan Yuille
3
+ On the distribution of points in a cube and the approximate evaluation of integrals 1967 I. M. Sobol
3
+ Accelerated Monte Carlo for Optimal Estimation of Time Series 2005 Francis J. Alexander
Gregory L. Eyink
Juan M. Restrepo
3
+ Equality of Opportunity in Supervised Learning 2016 Moritz Hardt
Eric Price
Nathan Srebro
3
+ Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions 2002 Shy Shoham
3
+ Multi-fidelity Bayesian Optimisation with Continuous Approximations 2017 Kirthevasan Kandasamy
Gautam Dasarathy
Jeff Schneider
Barnabás Póczos
3
+ Model-based Asynchronous Hyperparameter and Neural Architecture Search 2020 Aaron Klein
Louis C. Tiao
Thibaut Lienart
Cédric Archambeau
Matthias Seeger
3
+ Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) 2015 Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
2
+ None 1997 Rainer Storn
Kenneth V. Price
2
+ Heteroscedastic Treed Bayesian Optimisation 2014 John-Alexander M. Assael
Ziyu Wang
Nando de Freitas
2
+ PDF Chat SMOTE: Synthetic Minority Over-sampling Technique 2002 Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Philip Kegelmeyer
2
+ PDF Chat Likelihood Inference for Discretely Observed Nonlinear Diffusions 2001 Ola Elerian
Siddhartha Chib
Neil Shephard
2
+ Principal Component Analysis 1988 Colin Goodall
Ian T. Jolliffe
2
+ PDF Chat Bayesian inference for nonlinear multivariate diffusion models observed with error 2007 Andrew Golightly
Darren J. Wilkinson
2
+ ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES 1933 W. R THOMPSON
2