+
PDF
Chat
|
Hyperparameter Optimization in Machine Learning
|
2024
|
Luca Franceschi
Michele Donini
Valerio Perrone
Aaron Klein
Cédric Archambeau
Matthias Seeger
Massimiliano Pontil
Paolo Frasconi
|
+
PDF
Chat
|
Structural Pruning of Pre-trained Language Models via Neural
Architecture Search
|
2024
|
Aaron Klein
Jacek Gołębiowski
Xingchen Ma
Valerio Perrone
Cédric Archambeau
|
+
PDF
Chat
|
Explaining Probabilistic Models with Distributional Values
|
2024
|
Luca Franceschi
Michele Donini
Cédric Archambeau
Matthias Seeger
|
+
|
Fortuna: A Library for Uncertainty Quantification in Deep Learning
|
2023
|
Gianluca Detommaso
Alberto Gasparin
Michele Donini
Matthias Seeger
Andrew Gordon Wilson
Cédric Archambeau
|
+
|
Renate: A Library for Real-World Continual Learning
|
2023
|
Martin Wistuba
Martin Ferianc
Lukas Balles
Cédric Archambeau
Giovanni Zappella
|
+
|
Optimizing Hyperparameters with Conformal Quantile Regression
|
2023
|
David Salinas
Jacek Gołębiowski
Aaron Klein
Matthias Seeger
Cédric Archambeau
|
+
|
Geographical Erasure in Language Generation
|
2023
|
Pola Schwöbel
Jacek Gołębiowski
Michele Donini
Cédric Archambeau
Danish Pruthi
|
+
|
Geographical Erasure in Language Generation
|
2023
|
Pola Schwöbel
Jacek Gołębiowski
Michele Donini
Cédric Archambeau
Danish Pruthi
|
+
|
A Negative Result on Gradient Matching for Selective Backprop
|
2023
|
Lukas Balles
Cédric Archambeau
Giovanni Zappella
|
+
PDF
Chat
|
Continual Learning with Transformers for Image Classification
|
2022
|
Beyza Ermiş
Giovanni Zappella
Martin Wistuba
Aditya Rawal
Cédric Archambeau
|
+
|
Diverse Counterfactual Explanations for Anomaly Detection in Time Series
|
2022
|
Déborah Sulem
Michele Donini
Muhammad Bilal Zafar
François-Xavier Aubet
Jan Gasthaus
Tim Januschowski
Sanjiv Ranjan Das
Krishnaram Kenthapadi
Cédric Archambeau
|
+
|
Gradient-Matching Coresets for Rehearsal-Based Continual Learning
|
2022
|
Lukas Balles
Giovanni Zappella
Cédric Archambeau
|
+
|
Memory Efficient Continual Learning with Transformers
|
2022
|
Beyza Ermiş
Giovanni Zappella
Martin Wistuba
Cédric Archambeau
|
+
|
Continual Learning with Transformers for Image Classification
|
2022
|
Beyza Ermiş
Giovanni Zappella
Martin Wistuba
Aditya Rawal
Cédric Archambeau
|
+
|
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors
|
2022
|
Gianluca Detommaso
Alberto Gasparin
A. S. Wilson
Cédric Archambeau
|
+
|
Private Synthetic Data for Multitask Learning and Marginal Queries
|
2022
|
Giuseppe Vietri
Cédric Archambeau
Sergül Aydöre
William Brown
Michael Kearns
Aaron Roth
Ankit Siva
Shuai Tang
Zhiwei Steven Wu
|
+
|
PASHA: Efficient HPO and NAS with Progressive Resource Allocation
|
2022
|
Ondrej Bohdal
Lukas Balles
Beyza Ermiş
Cédric Archambeau
Giovanni Zappella
|
+
PDF
Chat
|
Gradient-matching coresets for continual learning
|
2021
|
Lukas Balles
Giovanni Zappella
Cédric Archambeau
|
+
|
Meta-Forecasting by combining Global Deep Representations with Local Adaptation.
|
2021
|
Riccardo Grazzi
Valentín Flunkert
David Salinas
Tim Januschowski
Matthias Seeger
Cédric Archambeau
|
+
PDF
Chat
|
Meta-Forecasting by combining Global Deep Representations with Local
Adaptation
|
2021
|
Riccardo Grazzi
Valentín Flunkert
David Salinas
Tim Januschowski
Matthias Seeger
Cédric Archambeau
|
+
|
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
|
2021
|
Valerio Perrone
Huibin Shen
Aida Zolic
Iaroslav Shcherbatyi
Amr Ahmed
Tanya Bansal
Michele Donini
Fela Winkelmolen
Rodolphe Jenatton
Jean Baptiste Faddoul
|
+
|
Fair Bayesian Optimization
|
2021
|
Valerio Perrone
Michele Donini
Muhammad Bilal Zafar
Robin Schmucker
Krishnaram Kenthapadi
Cédric Archambeau
|
+
|
A multi-objective perspective on jointly tuning hardware and hyperparameters.
|
2021
|
David Salinas
Valerio Perrone
Olivier Cruchant
Cédric Archambeau
|
+
|
On the Lack of Robust Interpretability of Neural Text Classifiers
|
2021
|
Muhammad Bilal Zafar
Michele Donini
Dylan Slack
Cédric Archambeau
Sanjiv Ranjan Das
Krishnaram Kenthapadi
|
+
|
Overfitting in Bayesian optimization: An empirical study and early-stopping solution
|
2021
|
Anastasia Makarova
Huibin Shen
Valerio Perrone
Aaron Klein
Jean Baptiste Faddoul
Andreas Krause
Matthias Seeger
Cédric Archambeau
|
+
|
Hyperparameter Transfer Learning with Adaptive Complexity
|
2021
|
Samuel Horváth
Aaron Klein
Peter Richtárik
Cédric Archambeau
|
+
|
BORE: Bayesian Optimization by Density-Ratio Estimation
|
2021
|
Louis C. Tiao
Aaron Klein
Matthias Seeger
Edwin V. Bonilla
Cédric Archambeau
Fábio Ramos
|
+
|
A resource-efficient method for repeated HPO and NAS problems
|
2021
|
Giovanni Zappella
David Salinas
Cédric Archambeau
|
+
|
BORE: Bayesian Optimization by Density-Ratio Estimation
|
2021
|
Chi-Chun Tiao
Aaron Klein
Matthias Seeger
Edwin V. Bonilla
Cédric Archambeau
Fábio Ramos
|
+
|
Multi-objective Asynchronous Successive Halving
|
2021
|
Robin Schmucker
Michele Donini
Muhammad Bilal Zafar
David Salinas
Cédric Archambeau
|
+
|
On the Lack of Robust Interpretability of Neural Text Classifiers
|
2021
|
Muhammad Bilal Zafar
Michele Donini
Dylan Slack
Cédric Archambeau
Sanjiv Ranjan Das
Krishnaram Kenthapadi
|
+
|
More Than Words: Towards Better Quality Interpretations of Text Classifiers
|
2021
|
Muhammad Bilal Zafar
Philipp Schmidt
Michele Donini
Cédric Archambeau
Felix Bießmann
Sanjiv Ranjan Das
Krishnaram Kenthapadi
|
+
|
A multi-objective perspective on jointly tuning hardware and hyperparameters
|
2021
|
David Salinas
Valerio Perrone
Olivier Cruchant
Cédric Archambeau
|
+
|
On the Lack of Robust Interpretability of Neural Text Classifiers
|
2021
|
Muhammad Bilal Zafar
Michele Donini
Dylan Slack
Cédric Archambeau
Sanjiv Ranjan Das
Krishnaram Kenthapadi
|
+
|
Automatic Termination for Hyperparameter Optimization
|
2021
|
Anastasia Makarova
Huibin Shen
Valerio Perrone
Aaron Klein
Jean Baptiste Faddoul
Andreas Krause
Matthias Seeger
Cédric Archambeau
|
+
|
Hyperparameter Transfer Learning with Adaptive Complexity
|
2021
|
Samuel Horváth
Aaron Klein
Peter Richtárik
Cédric Archambeau
|
+
|
Meta-Forecasting by combining Global Deep Representations with Local Adaptation
|
2021
|
Riccardo Grazzi
Valentín Flunkert
David Salinas
Tim Januschowski
Matthias Seeger
Cédric Archambeau
|
+
|
Gradient-matching coresets for continual learning
|
2021
|
Lukas Balles
Giovanni Zappella
Cédric Archambeau
|
+
|
Amazon SageMaker Automatic Model Tuning: Scalable Black-box Optimization
|
2020
|
Valerio Perrone
Huibin Shen
Aida Zolic
Iaroslav Shcherbatyi
Amr Ahmed
Tanya Bansal
Michele Donini
Fela Winkelmolen
Rodolphe Jenatton
Jean Baptiste Faddoul
|
+
|
Amazon SageMaker Autopilot: a white box AutoML solution at scale
|
2020
|
Piali Das
Valerio Perrone
Nikita Ivkin
Tanya Bansal
Zohar Karnin
Huibin Shen
Iaroslav Shcherbatyi
Yotam Elor
Wilton Wu
Aida Zolic
|
+
|
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
|
2020
|
Valerio Perrone
Huibin Shen
Aida Zolic
Iaroslav Shcherbatyi
Amr Ahmed
Tanya Bansal
Michele Donini
Fela Winkelmolen
Rodolphe Jenatton
Jean Baptiste Faddoul
|
+
|
Pareto-efficient acquisition functions for cost-aware Bayesian optimization
|
2020
|
Gauthier Guinet
Valerio Perrone
Cédric Archambeau
|
+
|
Fair Bayesian Optimization
|
2020
|
Valerio Perrone
Michele Donini
Muhammad Bilal Zafar
Robin Schmucker
Krishnaram Kenthapadi
Cédric Archambeau
|
+
|
LEEP: A New Measure to Evaluate Transferability of Learned Representations
|
2020
|
Cuong V. Nguyen
Tal Hassner
Matthias Seeger
Cédric Archambeau
|
+
|
Cost-aware Bayesian Optimization
|
2020
|
Eric Hans Lee
Valerio Perrone
Cédric Archambeau
Matthias Seeger
|
+
|
Model-based Asynchronous Hyperparameter and Neural Architecture Search
|
2020
|
Aaron Klein
Louis C. Tiao
Thibaut Lienart
Cédric Archambeau
Matthias Seeger
|
+
|
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
|
2020
|
Valerio Perrone
Huibin Shen
Aida Zolic
Iaroslav Shcherbatyi
Amr Ahmed
Tanya Bansal
Michele Donini
Fela Winkelmolen
Rodolphe Jenatton
Jean Baptiste Faddoul
|
+
|
Amazon SageMaker Autopilot: a white box AutoML solution at scale
|
2020
|
Piali Das
Valerio Perrone
Nikita Ivkin
Tanya Bansal
Zohar Karnin
Huibin Shen
Iaroslav Shcherbatyi
Yotam Elor
Wilton Wu
Aida Zolic
|
+
|
Fair Bayesian Optimization
|
2020
|
Valerio Perrone
Michele Donini
Muhammad Bilal Zafar
Robin Schmucker
Krishnaram Kenthapadi
Cédric Archambeau
|
+
|
Pareto-efficient Acquisition Functions for Cost-Aware Bayesian Optimization
|
2020
|
Gauthier Guinet
Valerio Perrone
Cédric Archambeau
|
+
|
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
|
2019
|
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
|
+
|
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
|
2019
|
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
|
+
|
Constrained Bayesian Optimization with Max-Value Entropy Search
|
2019
|
Valerio Perrone
Iaroslav Shcherbatyi
Rodolphe Jenatton
Cédric Archambeau
Matthias Seeger
|
+
|
Constrained Bayesian Optimization with Max-Value Entropy Search
|
2019
|
Valerio Perrone
Iaroslav Shcherbatyi
Rodolphe Jenatton
Cédric Archambeau
Matthias Seeger
|
+
|
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
|
2019
|
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
|
+
|
An interpretable latent variable model for attribute applicability in the Amazon catalogue
|
2017
|
Tammo Rukat
Dustin Lange
Cédric Archambeau
|
+
|
Multiple Adaptive Bayesian Linear Regression for Scalable Bayesian Optimization with Warm Start
|
2017
|
Valerio Perrone
Rodolphe Jenatton
Matthias Seeger
Cédric Archambeau
|
+
|
An interpretable latent variable model for attribute applicability in the Amazon catalogue
|
2017
|
Tammo Rukat
Dustin Lange
Cédric Archambeau
|
+
|
Online optimization and regret guarantees for non-additive long-term constraints
|
2016
|
Rodolphe Jenatton
Jim Huang
Dominik Csiba
Cédric Archambeau
|
+
|
Online Inference for Relation Extraction with a Reduced Feature Set
|
2015
|
Maxim Rabinovich
Cédric Archambeau
|
+
|
Adaptive Algorithms for Online Convex Optimization with Long-term Constraints
|
2015
|
Rodolphe Jenatton
Jim Huang
Cédric Archambeau
|
+
|
Incremental Variational Inference for Latent Dirichlet Allocation
|
2015
|
Cédric Archambeau
Beyza Ermiş
|
+
|
Overlapping Trace Norms in Multi-View Learning
|
2014
|
Behrouz Behmardi
Cédric Archambeau
Guillaume Bouchard
|
+
|
Plackett-Luce regression: A new Bayesian model for polychotomous data
|
2012
|
Cédric Archambeau
François Caron
|
+
|
Approximate inference for continuous-time Markov processes
|
2011
|
Cédric Archambeau
Manfred Opper
|
+
|
Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions
|
2011
|
Yuan Shen
Dan Cornford
Manfred Opper
Cédric Archambeau
|
+
|
Multiple Gaussian Process Models
|
2011
|
Cédric Archambeau
Francis Bach
|
+
|
Improving the Robustness to Outliers of Mixtures of Probabilistic PCAs
|
2008
|
Nicolas Delannay
Cédric Archambeau
Michel Verleysen
|
+
PDF
Chat
|
Mixtures of robust probabilistic principal component analyzers
|
2008
|
Cédric Archambeau
Nicolas Delannay
Michel Verleysen
|
+
|
Variational Inference for Diffusion Processes
|
2007
|
Cédric Archambeau
Manfred Opper
Yuan Shen
Dan Cornford
John Shawe‐Taylor
|
+
PDF
Chat
|
Robust Bayesian clustering
|
2006
|
Cédric Archambeau
Michel Verleysen
|
+
|
Assessment of probability density estimation methods: Parzen window and finite Gaussian mixtures
|
2006
|
Cédric Archambeau
Maurizio Valle
Alex Assenza
Michel Verleysen
|
+
PDF
Chat
|
Robust probabilistic projections
|
2006
|
Cédric Archambeau
Nicolas Delannay
Michel Verleysen
|
+
|
Flexible and Robust Bayesian Classification by Finite Mixture Models
|
2004
|
Cédric Archambeau
Frédéric Vrins
Michel Verleysen
|
+
|
Fully nonparametric probability density function estimation with finite Gaussian mixture models
|
2003
|
Cédric Archambeau
Michel Verleysen
|