Kyle Mills

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Optimizing thermodynamic trajectories using evolutionary and gradient-based reinforcement learning 2021 Chris Beeler
Uladzimir Yahorau
Rory Coles
Kyle Mills
Stephen Whitelam
Isaac Tamblyn
+ PDF Chat Optical lattice experiments at unobserved conditions with generative adversarial deep learning 2021 Corneel Casert
Kyle Mills
Tom Vieijra
J. Ryckebusch
Isaac Tamblyn
+ Weakly-supervised multi-class object localization using only object counts as labels 2021 Kyle Mills
Isaac Tamblyn
+ PDF Chat Finding the ground state of spin Hamiltonians with reinforcement learning 2020 Kyle Mills
Pooya Ronagh
Isaac Tamblyn
+ PDF Chat Controlled Online Optimization Learning (COOL): Finding the ground state of spin Hamiltonians with reinforcement learning 2020 Kyle Mills
Pooya Ronagh
Isaac Tamblyn
+ Optimizing thermodynamic trajectories using evolutionary reinforcement learning. 2019 Chris Beeler
Uladzimir Yahorau
Rory Coles
Kyle Mills
Stephen Whitelam
Isaac Tamblyn
+ PDF Chat Extensive deep neural networks for transferring small scale learning to large scale systems 2019 Kyle Mills
Kevin Ryczko
Iryna Luchak
Adam Domurad
Chris Beeler
Isaac Tamblyn
+ PDF Chat Deep neural networks for direct, featureless learning through observation: The case of two-dimensional spin models 2018 Kyle Mills
Isaac Tamblyn
+ PDF Chat Convolutional neural networks for atomistic systems 2018 Kevin Ryczko
Kyle Mills
Iryna Luchak
Christa M. Homenick
Isaac Tamblyn
+ PDF Chat Deep learning and the Schrödinger equation 2017 Kyle Mills
Michael Spanner
Isaac Tamblyn
+ Extensive deep neural networks 2017 Iryna Luchak
Kyle Mills
Kevin Ryczko
Adam Domurad
Isaac Tamblyn
+ Deep learning and the Schrödinger equation 2017 Kyle Mills
Michael Spanner
Isaac Tamblyn
+ Phase space sampling and operator confidence with generative adversarial networks 2017 Kyle Mills
Isaac Tamblyn
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Solving the quantum many-body problem with artificial neural networks 2017 Giuseppe Carleo
Matthias Troyer
4
+ PDF Chat Deep learning and the Schrödinger equation 2017 Kyle Mills
Michael Spanner
Isaac Tamblyn
4
+ PDF Chat Machine learning for many-body physics: The case of the Anderson impurity model 2014 Louis-François Arsenault
Alejandro López‐Bezanilla
O. Anatole von Lilienfeld
Andrew J. Millis
3
+ PDF Chat Quantum-chemical insights from deep tensor neural networks 2017 Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
K. Müller
Alexandre Tkatchenko
3
+ PDF Chat Learning phase transitions by confusion 2017 Evert van Nieuwenburg
Ye-Hua Liu
Sebastian D. Huber
3
+ Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice 1969 Arthur E. Ferdinand
Michael E. Fisher
3
+ PDF Chat Machine learning phases of matter 2017 Juan Carrasquilla
Roger G. Melko
3
+ PDF Chat Application of Quantum Annealing to Nurse Scheduling Problem 2019 Kazuki Ikeda
Y. Nakamura
Travis S. Humble
2
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
2
+ PDF Chat Solving the graph-isomorphism problem with a quantum annealer 2012 Itay Hen
A. P. Young
2
+ PDF Chat Ising formulations of many NP problems 2014 Andrew Lucas
2
+ PDF Chat On representing chemical environments 2013 Albert P. Bartók
Risi Kondor
Gábor Cśanyi
2
+ PDF Chat Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States 2001 Fugao Wang
D. P. Landau
2
+ PDF Chat Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks 2016 Kun Yao
John Parkhill
2
+ PDF Chat Machine Learning Phases of Strongly Correlated Fermions 2017 Kelvin Ch’ng
Juan Carrasquilla
Roger G. Melko
Ehsan Khatami
2
+ Quantum annealing: A new method for minimizing multidimensional functions 1994 Aleta Finnila
Maria A. Gomez
C. Sebenik
C. Stenson
J. D. Doll
2
+ PDF Chat Quantum versus classical annealing of Ising spin glasses 2015 Bettina Heim
Troels F. Rønnow
Sergei V. Isakov
Matthias Troyer
2
+ PDF Chat Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer 2019 Maliheh Aramon
Gili Rosenberg
E. Valiante
Toshiyuki Miyazawa
Hirotaka Tamura
Helmut G. Katzgraber
2
+ PDF Chat Understanding machine‐learned density functionals 2015 Li Li
John Snyder
Isabelle M. Pelaschier
Jessica Huang
Uma‐Naresh Niranjan
Paul Duncan
Matthias Rupp
Klaus‐Robert Müller
Kieron Burke
2
+ Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules 2018 Rafael Gómez‐Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
Jorge Aguilera‐Iparraguirre
Timothy Hirzel
Ryan P. Adams
Alán Aspuru‐Guzik
2
+ PDF Chat Bypassing the Kohn-Sham equations with machine learning 2017 Felix Brockherde
Leslie Vogt-Maranto
Li Li
Mark E. Tuckerman
Kieron Burke
Klaus‐Robert Müller
2
+ Annealing by simulating the coherent Ising machine 2019 Egor Tiunov
Alexander E. Ulanov
A. I. Lvovsky
2
+ On the computational complexity of Ising spin glass models 1982 Francisco Barahona
2
+ PDF Chat Optimization by quantum annealing: Lessons from hard satisfiability problems 2005 Demian Battaglia
Giuseppe E. Santoro
Erio Tosatti
2
+ PDF Chat Destabilization of Local Minima in Analog Spin Systems by Correction of Amplitude Heterogeneity 2019 Timothée Leleu
Y. Yamamoto
Peter L. McMahon
Kazuyuki Aihara
2
+ PDF Chat Rotation-invariant convolutional neural networks for galaxy morphology prediction 2015 Sander Dieleman
Kyle Willett
Joni Dambre
2
+ PDF Chat A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem 2001 Edward Farhi
Jeffrey Goldstone
Sam Gutmann
Joshua M. Lapan
A. P. Lundgren
Daniel Preda
2
+ Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition 1944 Lars Onsager
2
+ PDF Chat Theory of Quantum Annealing of an Ising Spin Glass 2002 Giuseppe E. Santoro
Roman Martoňák
Erio Tosatti
Roberto Car
2
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
2
+ PDF Chat Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning 2012 Matthias Rupp
Alexandre Tkatchenko
Klaus‐Robert Müller
O. Anatole von Lilienfeld
2
+ PDF Chat Discovering phase transitions with unsupervised learning 2016 Lei Wang
2
+ PDF Chat Efficient Quantum and Simulated Annealing of Potts Models Using a Half-hot Constraint 2020 Shuntaro Okada
Masayuki Ohzeki
Kazuyuki Tanaka
2
+ PDF Chat Experimental demonstration of a robust and scalable flux qubit 2010 R. Harris
Jonas Johansson
A. J. Berkley
Mark W. Johnson
T. Lanting
Siyuan Han
P. Bunyk
E. Ladizinsky
T. Oh
I. Perminov
2
+ PDF Chat Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor 2014 P. Bunyk
Emile Hoskinson
Mark W. Johnson
E. Tolkacheva
Fabio Altomare
A. J. Berkley
R. Harris
Jeremy Hilton
T. Lanting
Anthony Przybysz
2
+ PDF Chat Evidence for quantum annealing with more than one hundred qubits 2014 Sergio Boixo
Troels F. Rønnow
Sergei V. Isakov
Zhihui Wang
D. Wecker
Daniel A. Lidar
John M. Martinis
Matthias Troyer
2
+ PDF Chat Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor 2010 R. Harris
Mark W. Johnson
T. Lanting
A. J. Berkley
Jonas Johansson
P. Bunyk
E. Tolkacheva
E. Ladizinsky
N. Ladizinsky
T. Oh
2
+ PDF Chat Deep neural networks for direct, featureless learning through observation: The case of two-dimensional spin models 2018 Kyle Mills
Isaac Tamblyn
2
+ PDF Chat Quantum annealing in the transverse Ising model 1998 Tadashi Kadowaki
Hidetoshi Nishimori
2
+ Monte Carlo sampling methods using Markov chains and their applications 1970 W. Keith Hastings
2
+ PDF Chat Entropy Production along a Stochastic Trajectory and an Integral Fluctuation Theorem 2005 Udo Seifert
1
+ Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach 2015 Raghunathan Ramakrishnan
Pavlo O. Dral
Matthias Rupp
O. Anatole von Lilienfeld
1
+ PDF Chat Topological Entanglement Entropy 2006 Alexei Kitaev
John Preskill
1
+ PDF Chat Biochemical Machines for the Interconversion of Mutual Information and Work 2017 Thomas McGrath
Nick S. Jones
Pieter Rein ten Wolde
Thomas E. Ouldridge
1
+ PDF Chat A convolutional neural network neutrino event classifier 2016 A. Aurisano
A. Radovic
D. Rocco
A. Himmel
M. D. Messier
E. Niner
G. Pawloski
F. Psihas
A. Sousa
P. Vahle
1
+ PDF Chat Comparing molecules and solids across structural and alchemical space 2016 Sandip De
Albert P. Bartók
Gábor Cśanyi
Michele Ceriotti
1
+ PDF Chat First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories 2009 Juan P. Garrahan
Robert L. Jack
Vivien Lecomte
Estelle Pitard
Kristina van Duijvendijk
Frédéric van Wijland
1
+ PDF Chat Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond 2007 Maciej Lewenstein
Anna Sanpera
V. Ahufinger
Bogdan Damski
Aditi Sen
Ujjwal Sen
1
+ PDF Chat Machine Learning Energies of 2 Million Elpasolite<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>A</mml:mi><mml:mi>B</mml:mi><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math>Crystals 2016 Felix A. Faber
Alexander Lindmaa
O. Anatole von Lilienfeld
Rickard Armiento
1
+ PDF Chat Molecular graph convolutions: moving beyond fingerprints 2016 Steven Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick Riley
1