+
PDF
Chat
|
Physics-Informed Transformation Toward Improving the Machine-Learned
NLTE Models of ICF Simulations
|
2024
|
Min Sang Cho
Paul Grabowski
Kowshik Thopalli
T. S. Jayram
Michael J. Barrow
Jayaraman J. Thiagarajan
Rushil Anirudh
Hai Phuong Le
H. A. Scott
Joshua Kallman
|
+
PDF
Chat
|
Bimodal Visualization of Industrial X-Ray and Neutron Computed
Tomography Data
|
2024
|
Xuan Huang
Haichao Miao
Hyo-Jin Kim
Andrew Townsend
Kyle Champley
Joseph W. Tringe
Valerio Pascucci
Peer‐Timo Bremer
|
+
PDF
Chat
|
HPAC-ML: A Programming Model for Embedding ML Surrogates in Scientific
Applications
|
2024
|
Zane Fink
Konstantinos Parasyris
Praneet Rathi
Giorgis Georgakoudis
Harshitha Menon
Peer‐Timo Bremer
|
+
PDF
Chat
|
Enabling Additive Manufacturing Part Inspection of Digital Twins via
Collaborative Virtual Reality
|
2024
|
Vuthea Chheang
Saurabh Narain
Garrett Hooten
Robert Cerda
Brian Au
Brian Thomas Weston
Brian Giera
Peer‐Timo Bremer
Haichao Miao
|
+
|
A Virtual Environment for Collaborative Inspection in Additive Manufacturing
|
2024
|
Vuthea Chheang
Brian Thomas Weston
Robert Cerda
Brian Au
Brian Giera
Peer‐Timo Bremer
Haichao Miao
|
+
PDF
Chat
|
A Virtual Environment for Collaborative Inspection in Additive
Manufacturing
|
2024
|
Vuthea Chheang
Brian Thomas Weston
Robert Cerda
Brian Au
Brian Giera
Peer‐Timo Bremer
Haichao Miao
|
+
PDF
Chat
|
“Understanding Robustness Lottery”: A Geometric Visual Comparative Analysis of Neural Network Pruning Approaches
|
2024
|
Zhimin Li
Shusen Liu
Xin Yu
Bhavya Kailkhura
Jie Cao
James Diffenderfer
Peer‐Timo Bremer
Valerio Pascucci
|
+
PDF
Chat
|
2022 Review of Data-Driven Plasma Science
|
2023
|
Rushil Anirudh
Richard Archibald
M. Salman Asif
Markus M. Becker
S. Benkadda
Peer‐Timo Bremer
Rick H. S. Budé
C. S. Chang
L. Chen
R.M. Churchill
|
+
PDF
Chat
|
Cross-GAN Auditing: Unsupervised Identification of Attribute Level Similarities and Differences Between Pretrained Generative Models
|
2023
|
Matthew Olson
Shusen Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
W. Eric Wong
|
+
|
Workflows Community Summit 2022: A Roadmap Revolution
|
2023
|
Rafael Ferreira da Silva
Rosa M. Badía
Venkat Bala
Deborah Bard
Peer‐Timo Bremer
Ian K. Buckley
Silvina Caíno‐Lores
Kyle Chard
Carole Goble
Shantenu Jha
|
+
|
Cross-GAN Auditing: Unsupervised Identification of Attribute Level Similarities and Differences between Pretrained Generative Models
|
2023
|
Matthew Olson
Shusen Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
W. Eric Wong
|
+
|
Workflows Community Summit 2022: A Roadmap Revolution
|
2023
|
Rafael Ferreira da Silva
Rosa M. Badía
Venkat Bala
Debbie Bard
Peer‐Timo Bremer
Ian K. Buckley
Silvina Caíno‐Lores
Kyle Chard
Carole Goble
Shantenu Jha
|
+
|
Instance-wise Linearization of Neural Network for Model Interpretation
|
2023
|
Zhimin Li
Shusen Liu
Bhavya Kailkhura
Peer‐Timo Bremer
Valerio Pascucci
|
+
|
Accelerating Flow Simulations using Online Dynamic Mode Decomposition
|
2023
|
Seung Won Suh
Seung Whan Chung
Peer‐Timo Bremer
Young‐Soo Choi
|
+
|
AVA: Towards Autonomous Visualization Agents through Visual Perception-Driven Decision-Making
|
2023
|
Shusen Liu
Haichao Miao
Zhimin Li
Matthew Olson
Valerio Pascucci
Peer‐Timo Bremer
|
+
PDF
Chat
|
Data-driven model for divertor plasma detachment prediction
|
2022
|
Ben Zhu
Menglong Zhao
Harsh Bhatia
X. Q. Xu
Peer‐Timo Bremer
William H. Meyer
Nami Li
Thomas D. Rognlien
|
+
PDF
Chat
|
AMM: Adaptive Multilinear Meshes
|
2022
|
Harsh Bhatia
Duong Hoang
Nate Morrical
Valerio Pascucci
Peer‐Timo Bremer
Peter Lindström
|
+
PDF
Chat
|
Enabling machine learning-ready HPC ensembles with Merlin
|
2022
|
J. L. Peterson
Ben Bay
J. M. Koning
Peter Robinson
Jessica Semler
Jeremy White
Rushil Anirudh
Kevin Athey
Peer‐Timo Bremer
Francesco Di Natale
|
+
|
2022 Review of Data-Driven Plasma Science
|
2022
|
Rushil Anirudh
Richard Archibald
M. Salman Asif
Markus M. Becker
S. Benkadda
Peer‐Timo Bremer
Rick H. S. Budé
C. S. Chang
L. Chen
R M Churchill
|
+
|
"Understanding Robustness Lottery": A Geometric Visual Comparative Analysis of Neural Network Pruning Approaches
|
2022
|
Zhimin Li
Shusen Liu
Xin Yu
Bhavya Kailkhura
Jie Cao
Diffenderfer James Daniel
Peer‐Timo Bremer
Valerio Pascucci
|
+
|
Data-driven model for divertor plasma detachment prediction
|
2022
|
Ben Zhu
Menglong Zhao
Harsh Bhatia
X. Q. Xu
Peer‐Timo Bremer
William H. Meyer
Nami Li
T.D. Rognlien
|
+
|
Emerging Patterns in the Continuum Representation of Protein-Lipid Fingerprints
|
2022
|
Konstantia Georgouli
Helgi I. Ingólfsson
Fikret Aydin
Mark Heimann
Felice C. Lightstone
Peer‐Timo Bremer
Harsh Bhatia
|
+
|
Models Out of Line: A Fourier Lens on Distribution Shift Robustness
|
2022
|
Sara Fridovich-Keil
Brian R. Bartoldson
James Diffenderfer
Bhavya Kailkhura
Peer‐Timo Bremer
|
+
|
Identifying Orientation-specific Lipid-protein Fingerprints using Deep Learning
|
2022
|
Fikret Aydin
Konstantia Georgouli
Gautham Dharuman
James N. Glosli
Felice C. Lightstone
Helgi I. Ingólfsson
Peer‐Timo Bremer
Harsh Bhatia
|
+
|
Single Model Uncertainty Estimation via Stochastic Data Centering
|
2022
|
Jayaraman J. Thiagarajan
Rushil Anirudh
Vivek Narayanaswamy
Peer‐Timo Bremer
|
+
|
Towards replacing physical testing of granular materials with a Topology-based Model
|
2021
|
Aniketh Venkat
Attila Gyulassy
Graham Kosiba
Amitesh Maiti
Henry Reinstein
Richard H. Gee
Peer‐Timo Bremer
Valerio Pascucci
|
+
|
Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion
|
2021
|
Ankita Shukla
Rushil Anirudh
Eugene Kur
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
B. K. Spears
T. Ma
Pavan Turaga
|
+
|
Scalable Comparative Visualization of Ensembles of Call Graphs
|
2021
|
Suraj P. Kesavan
Harsh Bhatia
Abhinav Bhatelé
Stephanie Brink
Olga Pearce
Todd Gamblin
Peer‐Timo Bremer
Kwan‐Liu Ma
|
+
PDF
Chat
|
Accurate and Robust Feature Importance Estimation under Distribution Shifts
|
2021
|
Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Rushil Anirudh
Peer‐Timo Bremer
Andreas Spanias
|
+
|
Accurate and Robust Feature Importance Estimation under Distribution Shifts.
|
2021
|
Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Rushil Anirudh
Peer‐Timo Bremer
Andreas Spanias
|
+
PDF
Chat
|
MARGIN: Uncovering Deep Neural Networks Using Graph Signal Analysis
|
2021
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
Peer‐Timo Bremer
|
+
|
Transfer learning suppresses simulation bias in predictive models built from sparse, multi-modal data.
|
2021
|
Bogdan Kustowski
Jim Gaffney
B. K. Spears
Gemma J. Anderson
Rushil Anirudh
Peer‐Timo Bremer
Jayaraman J. Thiagarajan
|
+
|
Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion
|
2021
|
Ankita Shukla
Rushil Anirudh
Eugene Kur
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
B. K. Spears
T. Ma
Pavan Turaga
|
+
|
Suppressing simulation bias using multi-modal data
|
2021
|
Bogdan Kustowski
Jim Gaffney
B. K. Spears
Gemma J. Anderson
Rushil Anirudh
Peer‐Timo Bremer
Jayaraman J. Thiagarajan
Michael Kruse
R. Nora
|
+
|
Towards replacing physical testing of granular materials with a Topology-based Model
|
2021
|
Aniketh Venkat
Attila Gyulassy
Graham Kosiba
Amitesh Maiti
Henry Reinstein
Richard H. Gee
Peer‐Timo Bremer
Valerio Pascucci
|
+
PDF
Chat
|
Designing accurate emulators for scientific processes using calibration-driven deep models
|
2020
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
Peer‐Timo Bremer
Jim Gaffney
Gemma J. Anderson
B. K. Spears
|
+
|
Meaningful uncertainties from deep neural network surrogates of large-scale numerical simulations.
|
2020
|
Gemma J. Anderson
Jim Gaffney
B. K. Spears
Peer‐Timo Bremer
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
Machine Learning-Powered Mitigation Policy Optimization in Epidemiological Models.
|
2020
|
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Rushil Anirudh
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
|
+
|
Accurate Calibration of Agent-based Epidemiological Models with Neural Network Surrogates.
|
2020
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
|
+
PDF
Chat
|
Improved surrogates in inertial confinement fusion with manifold and cycle consistencies
|
2020
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
B. K. Spears
|
+
PDF
Chat
|
Coverage-Based Designs Improve Sample Mining and Hyperparameter Optimization
|
2020
|
Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Cihan Tepedelenlioğlu
Andreas Spanias
|
+
PDF
Chat
|
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors
|
2020
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Prasanna Sattigeri
Peer‐Timo Bremer
|
+
|
MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking
|
2020
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
|
+
|
Scalable Comparative Visualization of Ensembles of Call Graphs
|
2020
|
Suraj P. Kesavan
Harsh Bhatia
Abhinav Bhatelé
Todd Gamblin
Peer‐Timo Bremer
Kwan‐Liu Ma
|
+
|
Meaningful uncertainties from deep neural network surrogates of large-scale numerical simulations
|
2020
|
Gemma J. Anderson
Jim Gaffney
B. K. Spears
Peer‐Timo Bremer
Rushil Anirudh
Jayaraman J. Thiagarajan
|
+
|
Machine Learning-Powered Mitigation Policy Optimization in Epidemiological Models
|
2020
|
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Rushil Anirudh
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
|
+
|
Accurate Calibration of Agent-based Epidemiological Models with Neural Network Surrogates
|
2020
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Timothy C. Germann
Sara Y. Del Valle
Frederick H. Streitz
|
+
|
Accurate and Robust Feature Importance Estimation under Distribution Shifts
|
2020
|
Jayaraman J. Thiagarajan
Vivek Narayanaswamy
Rushil Anirudh
Peer‐Timo Bremer
Andreas Spanias
|
+
|
Improved Surrogates in Inertial Confinement Fusion with Manifold and Cycle Consistencies
|
2019
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
B. K. Spears
|
+
|
MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking
|
2019
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
|
+
|
Merlin: Enabling Machine Learning-Ready HPC Ensembles
|
2019
|
J. L. Peterson
Rushil Anirudh
Kevin Athey
Benjamin Bay
Peer‐Timo Bremer
Vic Castillo
Francesco Di Natale
David L. Fox
Jim Gaffney
David Hysom
|
+
|
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets
|
2019
|
Sam Adé Jacobs
Brian Van Essen
David Hysom
Jae-Seung Yeom
Tim Moon
Rushil Anirudh
Jayaraman J. Thiagaranjan
Shusen Liu
Peer‐Timo Bremer
Jim Gaffney
|
+
|
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors
|
2019
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Prasanna Sattigeri
Peer‐Timo Bremer
|
+
|
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets
|
2019
|
Sam Adé Jacobs
Jim Gaffney
Tom Benson
Peter Robinson
Luc Peterson
B. K. Spears
Brian Van Essen
David Hysom
Jae-Seung Yeom
Tim Moon
|
+
|
Scalable Topological Data Analysis and Visualization for Evaluating Data-Driven Models in Scientific Applications
|
2019
|
Shusen Liu
Jim Gaffney
Luc Peterson
Peter Robinson
Harsh Bhatia
Valerio Pascucci
B. K. Spears
Peer‐Timo Bremer
Di Wang
Dan Maljovec
|
+
|
Understanding Deep Neural Networks through Input Uncertainties
|
2019
|
Jayaraman J. Thiagarajan
Irene Kim
Rushil Anirudh
Peer‐Timo Bremer
|
+
|
A Look at the Effect of Sample Design on Generalization through the Lens of Spectral Analysis
|
2019
|
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Qunwei Li
Peer‐Timo Bremer
|
+
|
Scalable Topological Data Analysis and Visualization for Evaluating Data-Driven Models in Scientific Applications
|
2019
|
Shusen Liu
Di Wang
Dan Maljovec
Rushil Anirudh
Jayaraman J. Thiagarajan
Sam Adé Jacobs
Brian C. Van Essen
David Hysom
Jae-Seung Yeom
Jim Gaffney
|
+
|
Function Preserving Projection for Scalable Exploration of High-Dimensional Data
|
2019
|
Shusen Liu
Rushil Anirudh
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
|
+
|
Exploring Generative Physics Models with Scientific Priors in Inertial Confinement Fusion
|
2019
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Shusen Liu
Peer‐Timo Bremer
B. K. Spears
|
+
|
Enabling Machine Learning-Ready HPC Ensembles with Merlin
|
2019
|
Peterson Jl
Bay B
J. M. Koning
Peter Robinson
Jessica Semler
Jeremy White
Rushil Anirudh
Kevin Athey
Peer‐Timo Bremer
Natale Fd
|
+
|
MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking
|
2019
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
|
+
|
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets
|
2019
|
Sam Adé Jacobs
Brian Van Essen
David Hysom
Jae-Seung Yeom
Tim Moon
Rushil Anirudh
Jayaraman J. Thiagaranjan
Shusen Liu
Peer‐Timo Bremer
Jim Gaffney
|
+
|
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors
|
2019
|
Jayaraman J. Thiagarajan
Bindya Venkatesh
Prasanna Sattigeri
Peer‐Timo Bremer
|
+
|
MimicGAN: Corruption-Mimicking for Blind Image Recovery & Adversarial Defense
|
2018
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
|
+
|
Understanding Deep Neural Networks through Input Uncertainties
|
2018
|
Jayaraman J. Thiagarajan
Irene Kim
Rushil Anirudh
Peer‐Timo Bremer
|
+
|
Controlled Random Search Improves Hyper-Parameter Optimization
|
2018
|
Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
|
+
|
Coverage-Based Designs Improve Sample Mining and Hyper-Parameter Optimization
|
2018
|
Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Cihan Tepedelenlioğlu
Andreas Spanias
|
+
PDF
Chat
|
Deep learning: A guide for practitioners in the physical sciences
|
2018
|
B. K. Spears
James M. Brase
Peer‐Timo Bremer
Barry Chen
J. E. Field
Jim Gaffney
Michael Kruse
S. Langer
Katie L. Lewis
R. Nora
|
+
PDF
Chat
|
Exploring High‐Dimensional Structure via Axis‐Aligned Decomposition of Linear Projections
|
2018
|
Jayaraman J. Thiagarajan
S. Liu
Karthikeyan Natesan Ramamurthy
Peer‐Timo Bremer
|
+
PDF
Chat
|
Lose the Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion
|
2018
|
Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
K. Aditya Mohan
Kyle Champley
Peer‐Timo Bremer
|
+
|
An Unsupervised Approach to Solving Inverse Problems using Generative Adversarial Networks
|
2018
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
|
+
|
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
|
2018
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
Peer‐Timo Bremer
|
+
|
Unsupervised Dimension Selection using a Blue Noise Spectrum
|
2018
|
Jayaraman J. Thiagarajan
Rushil Anirudh
Rahul Sridhar
Peer‐Timo Bremer
|
+
|
Understanding Deep Neural Networks through Input Uncertainties
|
2018
|
Jayaraman J. Thiagarajan
Irene Kim
Rushil Anirudh
Peer‐Timo Bremer
|
+
|
Coverage-Based Designs Improve Sample Mining and Hyper-Parameter Optimization
|
2018
|
Gowtham Muniraju
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Cihan Tepedelenlioglu
Andreas Spanias
|
+
|
An Unsupervised Approach to Solving Inverse Problems using Generative Adversarial Networks
|
2018
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
|
+
|
MimicGAN: Corruption-Mimicking for Blind Image Recovery & Adversarial Defense
|
2018
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Bhavya Kailkhura
Peer‐Timo Bremer
|
+
|
Exploring High-Dimensional Structure via Axis-Aligned Decomposition of Linear Projections
|
2017
|
Jayaraman J. Thiagarajan
Shusen Liu
Karthikeyan Natesan Ramamurthy
Peer‐Timo Bremer
|
+
|
Lose The Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion
|
2017
|
Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
K. Aditya Mohan
Kyle Champley
Peer‐Timo Bremer
|
+
|
Influential Sample Selection: A Graph Signal Processing Approach.
|
2017
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
Peer‐Timo Bremer
|
+
|
Data-Driven Metric Learning for History Matching
|
2017
|
Jacob Miller
Jayaraman J. Thiagarajan
Peer‐Timo Bremer
Nazish Hoda
Dave Stern
Rick T. Mifflin
|
+
|
A Spectral Approach for the Design of Experiments: Design, Analysis and Algorithms
|
2017
|
Bhavya Kailkhura
Jayaraman J. Thiagarajan
Charvi Rastogi
Pramod K. Varshney
Peer‐Timo Bremer
|
+
|
MARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
|
2017
|
Rushil Anirudh
Jayaraman J. Thiagarajan
Rahul Sridhar
Peer‐Timo Bremer
|
+
|
Exploring High-Dimensional Structure via Axis-Aligned Decomposition of Linear Projections
|
2017
|
Jayaraman J. Thiagarajan
Shusen Liu
Karthikeyan Natesan Ramamurthy
Peer‐Timo Bremer
|
+
|
Lose The Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion
|
2017
|
Rushil Anirudh
Hyojin Kim
Jayaraman J. Thiagarajan
Karthika Mohan
Kyle Champley
Peer‐Timo Bremer
|
+
|
Local, smooth, and consistent Jacobi set simplification
|
2014
|
Harsh Bhatia
Bei Wang
Gregory Norgard
Valerio Pascucci
Peer‐Timo Bremer
|
+
|
Robust Detection of Singularities in Vector Fields
|
2014
|
Harsh Bhatia
Attila Gyulassy
Hao Wang
Peer‐Timo Bremer
Valerio Pascucci
|
+
|
Robust Detection of Singularities in Vector Fields.
|
2014
|
Harsh Bhatia
Attila Gyulassy
Hao Wang
Peer‐Timo Bremer
Valerio Pascucci
|
+
|
Local, Smooth, and Consistent Jacobi Set Simplification
|
2013
|
Harsh Bhatia
Bei Wang
Gregory Norgard
Valerio Pascucci
Peer‐Timo Bremer
|
+
|
Local, Smooth, and Consistent Jacobi Set Simplification
|
2013
|
Harsh Bhatia
Bei Wang
Gregory Norgard
Valerio Pascucci
Peer‐Timo Bremer
|
+
PDF
Chat
|
ADAPTIVE SAMPLING WITH TOPOLOGICAL SCORES
|
2012
|
Dan Maljovec
Bei Wang
Ana Kupresanin
Gardar Johannesson
Valerio Pascucci
Peer‐Timo Bremer
|
+
|
Robust computation of Morse–Smale complexes of bilinear functions
|
2012
|
Gregory Norgard
Peer‐Timo Bremer
|
+
|
Heat release and turbulence statistics from a DNS of reacting jet in cross-flow parameterized in a jet natural coordinate system developed from scalar quantities.
|
2011
|
Janine Camille Bennett
Jacqueline H. Chen
Ray Grout
Peer‐Timo Bremer
Andrea Gruber
Attila Gyulassy
|
+
|
Robust Computation of Morse-Smale Complexes of Bilinear Functions
|
2010
|
Gregory Norgard
Peer‐Timo Bremer
|