+
|
Simultaneous Estimation of Stable Parameters for Multiple Autoregressive Processes From Datasets of Nonuniform Sizes
|
2025
|
Johannes Lederer
Rainer von Sachs
|
+
PDF
Chat
|
VCâPCR: A prediction method based on variable selection and clustering
|
2024
|
Rebecca Marion
Johannes Lederer
Bernadette Goevarts
Rainer von Sachs
|
+
|
Layer sparsity in neural networks
|
2024
|
Mohamed Hebiri
Johannes Lederer
Mahsa Taheri
|
+
PDF
Chat
|
Benchmarking the Fairness of Image Upsampling Methods
|
2024
|
Mike Laszkiewicz
Imant Daunhawer
Julia E. Vogt
Asja Fischer
Johannes Lederer
|
+
PDF
Chat
|
How many samples are needed to train a deep neural network?
|
2024
|
Pegah Golestaneh
Mahsa Taheri
Johannes Lederer
|
+
PDF
Chat
|
AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2
|
2024
|
Simon Damm
Mike Laszkiewicz
Johannes Lederer
Asja Fischer
|
+
|
Benchmarking the Fairness of Image Upsampling Methods
|
2024
|
Mike Laszkiewicz
Imant Daunhawer
Julia E. Vogt
Asja Fischer
Johannes Lederer
|
+
|
Reducing Computational and Statistical Complexity in Machine Learning Through Cardinality Sparsity
|
2023
|
Ali Mohades
Johannes Lederer
|
+
|
The DeepCAR Method: Forecasting Time-Series Data That Have Change Points
|
2023
|
Ayla Jungbluth
Johannes Lederer
|
+
PDF
Chat
|
Targeted deep learning: Framework, methods, and applications
|
2023
|
ShihâTing Huang
Johannes Lederer
|
+
|
Lag selection and estimation of stable parameters for multiple autoregressive processes through convex programming
|
2023
|
Somnath Chakraborty
Johannes Lederer
Rainer von Sachs
|
+
|
Extremes in High Dimensions: Methods and Scalable Algorithms
|
2023
|
Johannes Lederer
Marco Oesting
|
+
|
Single-Model Attribution of Generative Models Through Final-Layer Inversion
|
2023
|
Mike Laszkiewicz
Jonas Ricker
Johannes Lederer
Asja Fischer
|
+
|
Set-Membership Inference Attacks using Data Watermarking
|
2023
|
Mike Laszkiewicz
Denis Lukovnikov
Johannes Lederer
Asja Fischer
|
+
|
Affine Invariance in Continuous-Domain Convolutional Neural Networks
|
2023
|
Ali Mohaddes
Johannes Lederer
|
+
PDF
Chat
|
Balancing Statistical and Computational Precision: A General Theory and Applications to Sparse Regression
|
2022
|
Mahsa Taheri
Néhémy Lim
Johannes Lederer
|
+
PDF
Chat
|
DeepMoM: Robust Deep Learning With Median-of-Means
|
2022
|
ShihâTing Huang
Johannes Lederer
|
+
PDF
Chat
|
Topology Adaptive Graph Estimation in High Dimensions
|
2022
|
Johannes Lederer
Christian L. MĂŒller
|
+
|
Depth normalization of small RNA sequencing: using data and biology to select a suitable method
|
2022
|
Yannick DĂŒren
Johannes Lederer
LiâXuan Qin
|
+
|
Depth Normalization of Small RNA Sequencing: Using Data and Biology to Select a Suitable Method
|
2022
|
Yannick DĂŒren
Johannes Lederer
LiâXuan Qin
|
+
|
VC-PCR: A Prediction Method based on Supervised Variable Selection and Clustering
|
2022
|
Rebecca Marion
Johannes Lederer
Bernadette Govaerts
Rainer von Sachs
|
+
|
Statistical Guarantees for Approximate Stationary Points of Simple Neural Networks
|
2022
|
Mahsa Taheri
Fang Xie
Johannes Lederer
|
+
|
Marginal Tail-Adaptive Normalizing Flows
|
2022
|
Mike Laszkiewicz
Johannes Lederer
Asja Fischer
|
+
|
Statistical guarantees for sparse deep learning
|
2022
|
Johannes Lederer
|
+
|
Theory II: Estimation and Support Recovery
|
2021
|
Johannes Lederer
|
+
|
Theory I: Prediction
|
2021
|
Johannes Lederer
|
+
|
Tuning-Parameter Calibration
|
2021
|
Johannes Lederer
|
+
|
Linear Regression
|
2021
|
Johannes Lederer
|
+
|
Inference
|
2021
|
Johannes Lederer
|
+
|
Graphical Models
|
2021
|
Johannes Lederer
|
+
|
Introduction
|
2021
|
Johannes Lederer
|
+
PDF
Chat
|
Is there a role for statistics in artificial intelligence?
|
2021
|
Sarah Friedrich
Gerd Antes
Sigrid Behr
Harald Binder
Werner Brannath
Florian Dumpert
Katja Ickstadt
Hans A. Kestler
Johannes Lederer
Heinz Leitgöb
|
+
|
Regularization and Reparameterization Avoid Vanishing Gradients in Sigmoid-Type Networks.
|
2021
|
Leni Ven
Johannes Lederer
|
+
PDF
Chat
|
Statistical guarantees for regularized neural networks
|
2021
|
Mahsa Taheri
Fang Xie
Johannes Lederer
|
+
|
Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery
|
2021
|
Mike Laszkiewicz
Johannes Lederer
Asja Fischer
|
+
PDF
Chat
|
Integrating additional knowledge into the estimation of graphical models
|
2021
|
Yunqi Bu
Johannes Lederer
|
+
PDF
Chat
|
Tuning-free ridge estimators for high-dimensional generalized linear models
|
2021
|
ShihâTing Huang
Fang Xie
Johannes Lederer
|
+
PDF
Chat
|
Aggregating Knockoffs for False Discovery Rate Control with an Application to Gut Microbiome Data
|
2021
|
Fang Xie
Johannes Lederer
|
+
|
Activation Functions in Artificial Neural Networks: A Systematic Overview
|
2021
|
Johannes Lederer
|
+
|
Targeted Deep Learning: Framework, Methods, and Applications
|
2021
|
ShihâTing Huang
Johannes Lederer
|
+
|
Copula-Based Normalizing Flows
|
2021
|
Mike Laszkiewicz
Johannes Lederer
Asja Fischer
|
+
|
Estimating the Lasso's Effective Noise
|
2021
|
Johannes Lederer
Michael Vogt
|
+
PDF
Chat
|
Tuning parameter calibration for personalized prediction in medicine
|
2021
|
ShihâTing Huang
Yannick DĂŒren
Kristoffer H. Hellton
Johannes Lederer
|
+
|
Regularization and Reparameterization Avoid Vanishing Gradients in Sigmoid-Type Networks
|
2021
|
Leni Ven
Johannes Lederer
|
+
|
DeepMoM: Robust Deep Learning With Median-of-Means
|
2021
|
ShihâTing Huang
Johannes Lederer
|
+
|
Is there a role for statistics in artificial intelligence
|
2020
|
Sarah Friedrich
Gerd Antes
Sigrid Behr
Harald Binder
Werner Brannath
Florian Dumpert
Katja Ickstadt
Hans A. Kestler
Johannes Lederer
Heinz Leitgöb
|
+
|
A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics
|
2020
|
Sophie-Charlotte Klose
Johannes Lederer
|
+
|
Statistical Guarantees for Regularized Neural Networks
|
2020
|
Mahsa Taheri
Fang Xie
Johannes Lederer
|
+
|
Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery
|
2020
|
Mike Laszkiewicz
Asja Fischer
Johannes Lederer
|
+
|
Estimating the Lasso's Effective Noise
|
2020
|
Johannes Lederer
Michael Vogt
|
+
|
Tuning-free ridge estimators for high-dimensional generalized linear models
|
2020
|
ShihâTing Huang
Fang Xie
Johannes Lederer
|
+
|
Risk Bounds for Robust Deep Learning
|
2020
|
Johannes Lederer
|
+
|
Optimization Landscapes of Wide Deep Neural Networks Are Benign
|
2020
|
Johannes Lederer
|
+
|
A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics
|
2020
|
Sophie-Charlotte Klose
Johannes Lederer
|
+
|
Estimating the Lasso's Effective Noise
|
2020
|
Johannes Lederer
Michael Vogt
|
+
|
Is there a role for statistics in artificial intelligence?
|
2020
|
Sarah Friedrich
Gerd Antes
Sigrid Behr
Harald Binder
Werner Brannath
Florian Dumpert
Katja Ickstadt
Hans A. Kestler
Johannes Lederer
Heinz Leitgöb
|
+
|
Layer Sparsity in Neural Networks
|
2020
|
Mohamed Hebiri
Johannes Lederer
|
+
|
Statistical Guarantees for Regularized Neural Networks
|
2020
|
Mahsa Taheri
Fang Xie
Johannes Lederer
|
+
|
Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery
|
2020
|
Mike Laszkiewicz
Asja Fischer
Johannes Lederer
|
+
PDF
Chat
|
Inference for high-dimensional instrumental variables regression
|
2019
|
David Gold
Johannes Lederer
Jing Tao
|
+
|
False Discovery Rates in Biological Networks
|
2019
|
Lu Yu
Tobias Kaufmann
Johannes Lederer
|
+
|
Aggregated False Discovery Rate Control
|
2019
|
Fang Xie
Johannes Lederer
|
+
PDF
Chat
|
Oracle inequalities for high-dimensional prediction
|
2019
|
Johannes Lederer
Yu Lu
Irina Gaynanova
|
+
|
Tuning parameter calibration for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e1278" altimg="si210.gif"><mml:msub><mml:mrow><mml:mi>â</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-regularized logistic regression
|
2019
|
Wei Li
Johannes Lederer
|
+
|
Tuning parameter calibration for prediction in personalized medicine
|
2019
|
ShihâTing Huang
Yannick DĂŒren
Kristoffer H. Hellton
Johannes Lederer
|
+
|
False Discovery Rates in Biological Networks
|
2019
|
Lu Yu
Tobias Kaufmann
Johannes Lederer
|
+
PDF
Chat
|
Prediction error bounds for linear regression with the TREX
|
2018
|
Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. MĂŒller
|
+
|
Prediction Error Bounds for Linear Regression With the TREX
|
2018
|
Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. MĂŒller
|
+
PDF
Chat
|
Maximum regularized likelihood estimators: A general prediction theory and applications
|
2018
|
Rui Zhuang
Johannes Lederer
|
+
|
Prediction Error Bounds for Linear Regression With the TREX
|
2018
|
Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian MĂŒller
|
+
|
Inference for high-dimensional nested regression
|
2017
|
David Gold
Johannes Lederer
Jing Tao
|
+
PDF
Chat
|
Optimal two-step prediction in regression
|
2017
|
Didier Chételat
Johannes Lederer
Joseph Salmon
|
+
PDF
Chat
|
Non-Convex Global Minimization and False Discovery Rate Control for the TREX
|
2017
|
Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. MĂŒller
|
+
|
Integrating Additional Knowledge Into Estimation of Graphical Models
|
2017
|
Yunqi Bu
Johannes Lederer
|
+
|
Maximum Regularized Likelihood Estimators: A General Prediction Theory and Applications
|
2017
|
Rui Zhuang
Johannes Lederer
|
+
|
Inference for high-dimensional instrumental variables regression
|
2017
|
David Gold
Johannes Lederer
Jing Tao
|
+
|
Optimal two-step prediction in regression
|
2017
|
Didier Chételat
Johannes Lederer
Joseph Salmon
|
+
|
Tuning Parameter Calibration in High-dimensional Logistic Regression With Theoretical Guarantees
|
2016
|
Wei Li
Johannes Lederer
|
+
|
On the prediction performance of the Lasso
|
2016
|
Arnak S. Dalalyan
Mohamed Hebiri
Johannes Lederer
|
+
|
Efficient Feature Selection With Large and High-dimensional Data
|
2016
|
Néhémy Lim
Johannes Lederer
|
+
|
Balancing Statistical and Computational Precision and Applications to Penalized Linear Regression with Group Sparsity
|
2016
|
Mahsa Taheri
Néhémy Lim
Johannes Lederer
|
+
|
Oracle Inequalities for High-dimensional Prediction
|
2016
|
Johannes Lederer
Yu Lu
Irina Gaynanova
|
+
|
Graphical Models for Discrete and Continuous Data
|
2016
|
Rui Zhuang
Noah Simon
Johannes Lederer
|
+
|
Tuning parameter calibration for $\ell_1$-regularized logistic regression
|
2016
|
Wei Li
Johannes Lederer
|
+
|
A practical scheme and fast algorithm to tune the lasso with optimality guarantees
|
2016
|
Michaël Chichignoud
Johannes Lederer
Martin J. Wainwright
|
+
|
Oracle Inequalities for High-dimensional Prediction
|
2016
|
Johannes Lederer
Yu Lu
Irina Gaynanova
|
+
PDF
Chat
|
Compute Less to Get More: Using ORC to Improve Sparse Filtering
|
2015
|
Johannes Lederer
Sergio Guadarrama
|
+
PDF
Chat
|
Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX
|
2015
|
Johannes Lederer
Christian L. MĂŒller
|
+
|
Don't fall for tuning parameters: tuning-free variable selection in high dimensions with the TREX
|
2015
|
Johannes Lederer
Christian L. MĂŒller
|
+
|
Tuning Lasso for sup-norm optimality
|
2014
|
Michaël Chichignoud
Johannes Lederer
Martin J. Wainwright
|
+
|
New concentration inequalities for suprema of empirical processes
|
2014
|
Johannes Lederer
Sara van de Geer
|
+
|
A robust, adaptive M-estimator for pointwise estimation in heteroscedastic regression
|
2014
|
Michaël Chichignoud
Johannes Lederer
|
+
|
On the Prediction Performance of the Lasso
|
2014
|
Arnak S. Dalalyan
Mohamed Hebiri
Johannes Lederer
|
+
|
A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality Guarantees
|
2014
|
Michaël Chichignoud
Johannes Lederer
Martin J. Wainwright
|
+
|
Topology Adaptive Graph Estimation in High Dimensions
|
2014
|
Johannes Lederer
Christa E. MĂŒller
|
+
|
Compute Less to Get More: Using ORC to Improve Sparse Filtering
|
2014
|
Johannes Lederer
Sergio Guadarrama
|
+
|
Optimal Two-Step Prediction in Regression
|
2014
|
Didier Chételat
Johannes Lederer
Joseph Salmon
|
+
|
Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX
|
2014
|
Johannes Lederer
Christian MĂŒller
|
+
PDF
Chat
|
The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms
|
2013
|
Florentina Bunea
Johannes Lederer
Yiyuan She
|
+
|
Trust, but verify: benefits and pitfalls of least-squares refitting in high dimensions
|
2013
|
Johannes Lederer
|
+
PDF
Chat
|
The Lasso, correlated design, and improved oracle inequalities
|
2013
|
Sara van de Geer
Johannes Lederer
|
+
|
The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms
|
2013
|
Florentina Bunea
Johannes Lederer
Yiyuan She
|
+
PDF
Chat
|
How Correlations Influence Lasso Prediction
|
2012
|
Mohamed Hebiri
Johannes Lederer
|
+
PDF
Chat
|
The BernsteinâOrlicz norm and deviation inequalities
|
2012
|
Sara van de Geer
Johannes Lederer
|
+
PDF
Chat
|
How Correlations Influence Lasso Prediction
|
2012
|
Mohamed Hebiri
Johannes Lederer
|
+
|
Nonasymptotic bounds for empirical processes and regression
|
2012
|
Johannes Lederer
|
+
|
How Correlations Influence Lasso Prediction
|
2012
|
Mohamed Hebiri
Johannes Lederer
|
+
|
The Bernstein-Orlicz norm and deviation inequalities
|
2011
|
Sara van de Geer
Johannes Lederer
|
+
|
The Lasso, correlated design, and improved oracle inequalities
|
2011
|
Sara van de Geer
Johannes Lederer
|
+
|
The Bernstein-Orlicz norm and deviation inequalities
|
2011
|
Sara van de Geer
Johannes Lederer
|
+
|
Bounds for Rademacher Processes via Chaining
|
2010
|
Johannes Lederer
|