Johannes Lederer

Follow

Generating author description...

All published works
Action Title Year Authors
+ Simultaneous Estimation of Stable Parameters for Multiple Autoregressive Processes From Datasets of Nonuniform Sizes 2025 Johannes Lederer
Rainer von Sachs
+ PDF Chat VC‐PCR: A prediction method based on variable selection and clustering 2024 Rebecca Marion
Johannes Lederer
Bernadette Goevarts
Rainer von Sachs
+ Layer sparsity in neural networks 2024 Mohamed Hebiri
Johannes Lederer
Mahsa Taheri
+ PDF Chat Benchmarking the Fairness of Image Upsampling Methods 2024 Mike Laszkiewicz
Imant Daunhawer
Julia E. Vogt
Asja Fischer
Johannes Lederer
+ PDF Chat How many samples are needed to train a deep neural network? 2024 Pegah Golestaneh
Mahsa Taheri
Johannes Lederer
+ PDF Chat AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2 2024 Simon Damm
Mike Laszkiewicz
Johannes Lederer
Asja Fischer
+ Benchmarking the Fairness of Image Upsampling Methods 2024 Mike Laszkiewicz
Imant Daunhawer
Julia E. Vogt
Asja Fischer
Johannes Lederer
+ Reducing Computational and Statistical Complexity in Machine Learning Through Cardinality Sparsity 2023 Ali Mohades
Johannes Lederer
+ The DeepCAR Method: Forecasting Time-Series Data That Have Change Points 2023 Ayla Jungbluth
Johannes Lederer
+ PDF Chat Targeted deep learning: Framework, methods, and applications 2023 Shih‐Ting Huang
Johannes Lederer
+ Lag selection and estimation of stable parameters for multiple autoregressive processes through convex programming 2023 Somnath Chakraborty
Johannes Lederer
Rainer von Sachs
+ Extremes in High Dimensions: Methods and Scalable Algorithms 2023 Johannes Lederer
Marco Oesting
+ Single-Model Attribution of Generative Models Through Final-Layer Inversion 2023 Mike Laszkiewicz
Jonas Ricker
Johannes Lederer
Asja Fischer
+ Set-Membership Inference Attacks using Data Watermarking 2023 Mike Laszkiewicz
Denis Lukovnikov
Johannes Lederer
Asja Fischer
+ Affine Invariance in Continuous-Domain Convolutional Neural Networks 2023 Ali Mohaddes
Johannes Lederer
+ PDF Chat Balancing Statistical and Computational Precision: A General Theory and Applications to Sparse Regression 2022 Mahsa Taheri
Néhémy Lim
Johannes Lederer
+ PDF Chat DeepMoM: Robust Deep Learning With Median-of-Means 2022 Shih‐Ting Huang
Johannes Lederer
+ PDF Chat Topology Adaptive Graph Estimation in High Dimensions 2022 Johannes Lederer
Christian L. MĂŒller
+ Depth normalization of small RNA sequencing: using data and biology to select a suitable method 2022 Yannick DĂŒren
Johannes Lederer
Li‐Xuan Qin
+ Depth Normalization of Small RNA Sequencing: Using Data and Biology to Select a Suitable Method 2022 Yannick DĂŒren
Johannes Lederer
Li‐Xuan Qin
+ VC-PCR: A Prediction Method based on Supervised Variable Selection and Clustering 2022 Rebecca Marion
Johannes Lederer
Bernadette Govaerts
Rainer von Sachs
+ Statistical Guarantees for Approximate Stationary Points of Simple Neural Networks 2022 Mahsa Taheri
Fang Xie
Johannes Lederer
+ Marginal Tail-Adaptive Normalizing Flows 2022 Mike Laszkiewicz
Johannes Lederer
Asja Fischer
+ Statistical guarantees for sparse deep learning 2022 Johannes Lederer
+ Theory II: Estimation and Support Recovery 2021 Johannes Lederer
+ Theory I: Prediction 2021 Johannes Lederer
+ Tuning-Parameter Calibration 2021 Johannes Lederer
+ Linear Regression 2021 Johannes Lederer
+ Inference 2021 Johannes Lederer
+ Graphical Models 2021 Johannes Lederer
+ Introduction 2021 Johannes Lederer
+ PDF Chat Is there a role for statistics in artificial intelligence? 2021 Sarah Friedrich
Gerd Antes
Sigrid Behr
Harald Binder
Werner Brannath
Florian Dumpert
Katja Ickstadt
Hans A. Kestler
Johannes Lederer
Heinz Leitgöb
+ Regularization and Reparameterization Avoid Vanishing Gradients in Sigmoid-Type Networks. 2021 Leni Ven
Johannes Lederer
+ PDF Chat Statistical guarantees for regularized neural networks 2021 Mahsa Taheri
Fang Xie
Johannes Lederer
+ Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery 2021 Mike Laszkiewicz
Johannes Lederer
Asja Fischer
+ PDF Chat Integrating additional knowledge into the estimation of graphical models 2021 Yunqi Bu
Johannes Lederer
+ PDF Chat Tuning-free ridge estimators for high-dimensional generalized linear models 2021 Shih‐Ting Huang
Fang Xie
Johannes Lederer
+ PDF Chat Aggregating Knockoffs for False Discovery Rate Control with an Application to Gut Microbiome Data 2021 Fang Xie
Johannes Lederer
+ Activation Functions in Artificial Neural Networks: A Systematic Overview 2021 Johannes Lederer
+ Targeted Deep Learning: Framework, Methods, and Applications 2021 Shih‐Ting Huang
Johannes Lederer
+ Copula-Based Normalizing Flows 2021 Mike Laszkiewicz
Johannes Lederer
Asja Fischer
+ Estimating the Lasso's Effective Noise 2021 Johannes Lederer
Michael Vogt
+ PDF Chat Tuning parameter calibration for personalized prediction in medicine 2021 Shih‐Ting Huang
Yannick DĂŒren
Kristoffer H. Hellton
Johannes Lederer
+ Regularization and Reparameterization Avoid Vanishing Gradients in Sigmoid-Type Networks 2021 Leni Ven
Johannes Lederer
+ DeepMoM: Robust Deep Learning With Median-of-Means 2021 Shih‐Ting Huang
Johannes Lederer
+ Is there a role for statistics in artificial intelligence 2020 Sarah Friedrich
Gerd Antes
Sigrid Behr
Harald Binder
Werner Brannath
Florian Dumpert
Katja Ickstadt
Hans A. Kestler
Johannes Lederer
Heinz Leitgöb
+ A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics 2020 Sophie-Charlotte Klose
Johannes Lederer
+ Statistical Guarantees for Regularized Neural Networks 2020 Mahsa Taheri
Fang Xie
Johannes Lederer
+ Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery 2020 Mike Laszkiewicz
Asja Fischer
Johannes Lederer
+ Estimating the Lasso's Effective Noise 2020 Johannes Lederer
Michael Vogt
+ Tuning-free ridge estimators for high-dimensional generalized linear models 2020 Shih‐Ting Huang
Fang Xie
Johannes Lederer
+ Risk Bounds for Robust Deep Learning 2020 Johannes Lederer
+ Optimization Landscapes of Wide Deep Neural Networks Are Benign 2020 Johannes Lederer
+ A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics 2020 Sophie-Charlotte Klose
Johannes Lederer
+ Estimating the Lasso's Effective Noise 2020 Johannes Lederer
Michael Vogt
+ Is there a role for statistics in artificial intelligence? 2020 Sarah Friedrich
Gerd Antes
Sigrid Behr
Harald Binder
Werner Brannath
Florian Dumpert
Katja Ickstadt
Hans A. Kestler
Johannes Lederer
Heinz Leitgöb
+ Layer Sparsity in Neural Networks 2020 Mohamed Hebiri
Johannes Lederer
+ Statistical Guarantees for Regularized Neural Networks 2020 Mahsa Taheri
Fang Xie
Johannes Lederer
+ Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery 2020 Mike Laszkiewicz
Asja Fischer
Johannes Lederer
+ PDF Chat Inference for high-dimensional instrumental variables regression 2019 David Gold
Johannes Lederer
Jing Tao
+ False Discovery Rates in Biological Networks 2019 Lu Yu
Tobias Kaufmann
Johannes Lederer
+ Aggregated False Discovery Rate Control 2019 Fang Xie
Johannes Lederer
+ PDF Chat Oracle inequalities for high-dimensional prediction 2019 Johannes Lederer
Yu Lu
Irina Gaynanova
+ Tuning parameter calibration for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e1278" altimg="si210.gif"><mml:msub><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-regularized logistic regression 2019 Wei Li
Johannes Lederer
+ Tuning parameter calibration for prediction in personalized medicine 2019 Shih‐Ting Huang
Yannick DĂŒren
Kristoffer H. Hellton
Johannes Lederer
+ False Discovery Rates in Biological Networks 2019 Lu Yu
Tobias Kaufmann
Johannes Lederer
+ PDF Chat Prediction error bounds for linear regression with the TREX 2018 Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. MĂŒller
+ Prediction Error Bounds for Linear Regression With the TREX 2018 Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. MĂŒller
+ PDF Chat Maximum regularized likelihood estimators: A general prediction theory and applications 2018 Rui Zhuang
Johannes Lederer
+ Prediction Error Bounds for Linear Regression With the TREX 2018 Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian MĂŒller
+ Inference for high-dimensional nested regression 2017 David Gold
Johannes Lederer
Jing Tao
+ PDF Chat Optimal two-step prediction in regression 2017 Didier Chételat
Johannes Lederer
Joseph Salmon
+ PDF Chat Non-Convex Global Minimization and False Discovery Rate Control for the TREX 2017 Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. MĂŒller
+ Integrating Additional Knowledge Into Estimation of Graphical Models 2017 Yunqi Bu
Johannes Lederer
+ Maximum Regularized Likelihood Estimators: A General Prediction Theory and Applications 2017 Rui Zhuang
Johannes Lederer
+ Inference for high-dimensional instrumental variables regression 2017 David Gold
Johannes Lederer
Jing Tao
+ Optimal two-step prediction in regression 2017 Didier Chételat
Johannes Lederer
Joseph Salmon
+ Tuning Parameter Calibration in High-dimensional Logistic Regression With Theoretical Guarantees 2016 Wei Li
Johannes Lederer
+ On the prediction performance of the Lasso 2016 Arnak S. Dalalyan
Mohamed Hebiri
Johannes Lederer
+ Efficient Feature Selection With Large and High-dimensional Data 2016 Néhémy Lim
Johannes Lederer
+ Balancing Statistical and Computational Precision and Applications to Penalized Linear Regression with Group Sparsity 2016 Mahsa Taheri
Néhémy Lim
Johannes Lederer
+ Oracle Inequalities for High-dimensional Prediction 2016 Johannes Lederer
Yu Lu
Irina Gaynanova
+ Graphical Models for Discrete and Continuous Data 2016 Rui Zhuang
Noah Simon
Johannes Lederer
+ Tuning parameter calibration for $\ell_1$-regularized logistic regression 2016 Wei Li
Johannes Lederer
+ A practical scheme and fast algorithm to tune the lasso with optimality guarantees 2016 Michaël Chichignoud
Johannes Lederer
Martin J. Wainwright
+ Oracle Inequalities for High-dimensional Prediction 2016 Johannes Lederer
Yu Lu
Irina Gaynanova
+ PDF Chat Compute Less to Get More: Using ORC to Improve Sparse Filtering 2015 Johannes Lederer
Sergio Guadarrama
+ PDF Chat Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX 2015 Johannes Lederer
Christian L. MĂŒller
+ Don't fall for tuning parameters: tuning-free variable selection in high dimensions with the TREX 2015 Johannes Lederer
Christian L. MĂŒller
+ Tuning Lasso for sup-norm optimality 2014 Michaël Chichignoud
Johannes Lederer
Martin J. Wainwright
+ New concentration inequalities for suprema of empirical processes 2014 Johannes Lederer
Sara van de Geer
+ A robust, adaptive M-estimator for pointwise estimation in heteroscedastic regression 2014 Michaël Chichignoud
Johannes Lederer
+ On the Prediction Performance of the Lasso 2014 Arnak S. Dalalyan
Mohamed Hebiri
Johannes Lederer
+ A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality Guarantees 2014 Michaël Chichignoud
Johannes Lederer
Martin J. Wainwright
+ Topology Adaptive Graph Estimation in High Dimensions 2014 Johannes Lederer
Christa E. MĂŒller
+ Compute Less to Get More: Using ORC to Improve Sparse Filtering 2014 Johannes Lederer
Sergio Guadarrama
+ Optimal Two-Step Prediction in Regression 2014 Didier Chételat
Johannes Lederer
Joseph Salmon
+ Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX 2014 Johannes Lederer
Christian MĂŒller
+ PDF Chat The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms 2013 Florentina Bunea
Johannes Lederer
Yiyuan She
+ Trust, but verify: benefits and pitfalls of least-squares refitting in high dimensions 2013 Johannes Lederer
+ PDF Chat The Lasso, correlated design, and improved oracle inequalities 2013 Sara van de Geer
Johannes Lederer
+ The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms 2013 Florentina Bunea
Johannes Lederer
Yiyuan She
+ PDF Chat How Correlations Influence Lasso Prediction 2012 Mohamed Hebiri
Johannes Lederer
+ PDF Chat The Bernstein–Orlicz norm and deviation inequalities 2012 Sara van de Geer
Johannes Lederer
+ PDF Chat How Correlations Influence Lasso Prediction 2012 Mohamed Hebiri
Johannes Lederer
+ Nonasymptotic bounds for empirical processes and regression 2012 Johannes Lederer
+ How Correlations Influence Lasso Prediction 2012 Mohamed Hebiri
Johannes Lederer
+ The Bernstein-Orlicz norm and deviation inequalities 2011 Sara van de Geer
Johannes Lederer
+ The Lasso, correlated design, and improved oracle inequalities 2011 Sara van de Geer
Johannes Lederer
+ The Bernstein-Orlicz norm and deviation inequalities 2011 Sara van de Geer
Johannes Lederer
+ Bounds for Rademacher Processes via Chaining 2010 Johannes Lederer
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
41
+ PDF Chat How Correlations Influence Lasso Prediction 2012 Mohamed Hebiri
Johannes Lederer
29
+ Statistics for High-Dimensional Data: Methods, Theory and Applications 2011 Peter Bhlmann
Sara van de Geer
29
+ PDF Chat The Lasso, correlated design, and improved oracle inequalities 2013 Sara van de Geer
Johannes Lederer
24
+ PDF Chat Scaled sparse linear regression 2012 Tao Sun
C.-H. Zhang
23
+ PDF Chat On the conditions used to prove oracle results for the Lasso 2009 Sara A. van de Geer
Peter BĂŒhlmann
22
+ On the prediction performance of the Lasso 2016 Arnak S. Dalalyan
Mohamed Hebiri
Johannes Lederer
21
+ PDF Chat Square-root lasso: pivotal recovery of sparse signals via conic programming 2011 Alexandre Belloni
Victor Chernozhukov
Lei Wang
21
+ Statistical Learning with Sparsity 2015 Trevor Hastie
Robert Tibshirani
Martin J. Wainwright
21
+ PDF Chat Oracle inequalities for high-dimensional prediction 2019 Johannes Lederer
Yu Lu
Irina Gaynanova
19
+ Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties 2001 Jianqing Fan
Runze Li
19
+ PDF Chat Model Selection and Estimation in Regression with Grouped Variables 2005 Ming Yuan
Yi Lin
18
+ PDF Chat Simultaneous analysis of Lasso and Dantzig selector 2009 Peter J. Bickel
Ya’acov Ritov
Alexandre B. Tsybakov
18
+ A practical scheme and fast algorithm to tune the lasso with optimality guarantees 2016 Michaël Chichignoud
Johannes Lederer
Martin J. Wainwright
17
+ PDF Chat The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms 2013 Florentina Bunea
Johannes Lederer
Yiyuan She
16
+ PDF Chat Nearly unbiased variable selection under minimax concave penalty 2010 Cun‐Hui Zhang
15
+ Sparse inverse covariance estimation with the graphical lasso 2007 Jerome H. Friedman
Trevor Hastie
R. Tibshirani
14
+ PDF Chat Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors 1997 Oleg Lepski
Enno Mammen
Vladimir Spokoiny
14
+ PDF Chat Non-Convex Global Minimization and False Discovery Rate Control for the TREX 2017 Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. MĂŒller
14
+ Don't fall for tuning parameters: tuning-free variable selection in high dimensions with the TREX 2015 Johannes Lederer
Christian L. MĂŒller
14
+ PDF Chat Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX 2015 Johannes Lederer
Christian L. MĂŒller
14
+ On a Problem of Adaptive Estimation in Gaussian White Noise 1991 O. V. Lepskii
14
+ Optimal two-step prediction in regression 2017 Didier Chételat
Johannes Lederer
Joseph Salmon
14
+ PDF Chat Sparse and Compositionally Robust Inference of Microbial Ecological Networks 2015 Zachary Kurtz
Christian L. MĂŒller
Emily R. Miraldi
Dan R. Littman
Martin J. Blaser
Richard Bonneau
13
+ Cross-Validatory Choice and Assessment of Statistical Predictions 1974 M. Stone
13
+ On Model Selection Consistency of Lasso 2006 Peng Zhao
Bin Yu
13
+ Model selection and estimation in the Gaussian graphical model 2007 Ming Yuan
Yi Lin
13
+ PDF Chat Prediction error bounds for linear regression with the TREX 2018 Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. MĂŒller
12
+ A Sparse-Group Lasso 2012 Noah Simon
Jerome H. Friedman
Trevor Hastie
Robert Tibshirani
12
+ Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$-Constrained Quadratic Programming (Lasso) 2009 Martin J. Wainwright
12
+ Least squares after model selection in high-dimensional sparse models 2013 Alexandre Belloni
Victor Chernozhukov
11
+ PDF Chat A survey of cross-validation procedures for model selection 2010 Sylvain Arlot
Alain CĂ©lisse
11
+ Regularization Paths for Generalized Linear Models via Coordinate Descent. 2010 Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
11
+ Tuning parameter calibration for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e1278" altimg="si210.gif"><mml:msub><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-regularized logistic regression 2019 Wei Li
Johannes Lederer
11
+ Persistence in high-dimensional linear predictor selection and the virtue of overparametrization 2004 Eitan Greenshtein
Ya’acov Ritov
11
+ PDF Chat Structured Regularizers for High-Dimensional Problems: Statistical and Computational Issues 2014 Martin J. Wainwright
11
+ High-dimensional graphs and variable selection with the Lasso 2006 Nicolai Meinshausen
Peter BĂŒhlmann
10
+ Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter 1979 Gene H. Golub
Michael T. Heath
Grace Wahba
10
+ On asymptotically optimal confidence regions and tests for high-dimensional models 2014 Sara van de Geer
Peter BĂŒhlmann
Ya’acov Ritov
Ruben Dezeure
10
+ PDF Chat A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection 2015 Jeremy Sabourin
William Valdar
Andrew B. Nobel
10
+ PDF Chat Least angle regression 2004 Bradley Efron
Trevor Hastie
Iain M. Johnstone
Robert Tibshirani
10
+ The Statistical Analysis of Compositional Data 1982 J. Aitchison
10
+ PDF Chat Sparsity oracle inequalities for the Lasso 2007 Florentina Bunea
Alexandre B. Tsybakov
Marten Wegkamp
10
+ Comments on: ℓ 1-penalization for mixture regression models 2010 Anestis Antoniadis
10
+ Spatial Interaction and the Statistical Analysis of Lattice Systems 1974 Julian Besag
10
+ PDF Chat ℓ1-penalization for mixture regression models 2010 Nicolas StĂ€dler
Peter BĂŒhlmann
Sara van de Geer
10
+ PDF Chat The Bernstein–Orlicz norm and deviation inequalities 2012 Sara van de Geer
Johannes Lederer
9
+ Ridge Regression: Biased Estimation for Nonorthogonal Problems 1970 Arthur E. Hoerl
Robert W. Kennard
9
+ Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion 2011 Vladimir Koltchinskii
Karim Lounici
Alexandre B. Tsybakov
9
+ PDF Chat Inference for high-dimensional instrumental variables regression 2019 David Gold
Johannes Lederer
Jing Tao
8