Duncan Watson‐Parris

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Discovering Latent Structural Causal Models from Spatio-Temporal Data 2024 Kun Wang
Sumanth Varambally
Duncan Watson‐Parris
Yi-An Ma
Rong Yu
+ PDF Chat Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation 2024 Bohan Lyu
Yadi Cao
Duncan Watson‐Parris
Leon Bergen
Taylor Berg-Kirkpatrick
Rong Yu
+ PDF Chat Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river 2024 Jorge Baño‐Medina
Agniv Sengupta
A. Michaelis
Luca Delle Monache
Julie Kalansky
Duncan Watson‐Parris
+ PDF Chat The impact of internal variability on benchmarking deep learning climate emulators 2024 Björn Lütjens
Raffaele Ferrari
Duncan Watson‐Parris
Noelle E. Selin
+ PDF Chat FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation 2024 Shahine Bouabid
Dino Sejdinović
Duncan Watson‐Parris
+ PDF Chat Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling 2024 Ruijia Niu
Dongxia Wu
Kai Kim
Yi-An Ma
Duncan Watson‐Parris
Rose Yu
+ PDF Chat CloudTracks: A Dataset for Localizing Ship Tracks in Satellite Images of Clouds 2024 Muhammad Chaudhry
Lyna Kim
Jeremy Irvin
Yuzu Ido
Sonia Chu
Jared Thomas Isobe
Andrew Y. Ng
Duncan Watson‐Parris
+ PDF Chat FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation 2023 Shahine Bouabid
Dino Sejdinović
Duncan Watson‐Parris
+ PDF Chat Exploring Randomly Wired Neural Networks for Climate Model Emulation 2023 William Yik
Sam J. Silva
Andrew Geiss
Duncan Watson‐Parris
+ Learning causal drivers of PyroCb 2023 Emiliano Díaz
Gherardo Varando
Fernando Iglesias‐Suarez
Gustau Camps‐Valls
Kenza Tazi
Kara D. Lamb
Duncan Watson‐Parris
+ FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation 2023 Shahine Bouabid
Dino Sejdinović
Duncan Watson‐Parris
+ Physics-Informed Learning of Aerosol Microphysics 2022 Paula Harder
Duncan Watson‐Parris
Philip Stier
Dominik Straßel
Nicolas R. Gauger
Janis Keuper
+ Identifying the Causes of Pyrocumulonimbus (PyroCb) 2022 Emiliano Díaz Salas-Porras
Kenza Tazi
Ashwin Braude
Daniel Okoh
Kara D. Lamb
Duncan Watson‐Parris
Paula Harder
N. Meinert
+ Pyrocast: a Machine Learning Pipeline to Forecast Pyrocumulonimbus (PyroCb) Clouds 2022 Kenza Tazi
Emiliano Díaz Salas-Porras
Ashwin Braude
Daniel Okoh
Kara D. Lamb
Duncan Watson‐Parris
Paula Harder
N. Meinert
+ Exploring Randomly Wired Neural Networks for Climate Model Emulation 2022 William Yik
Sam J. Silva
Andrew Geiss
Duncan Watson‐Parris
+ PDF Chat Physics-informed learning of aerosol microphysics 2022 Paula Harder
Duncan Watson‐Parris
Philip Stier
Dominik Straßel
Nicolas R. Gauger
Janis Keuper
+ AODisaggregation: toward global aerosol vertical profiles 2022 Shahine Bouabid
Duncan Watson‐Parris
Sofija Stefanović
Athanasios Nenes
Dino Sejdinović
+ PDF Chat Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator 2021 Duncan Watson‐Parris
Andrew Williams
Lucia Deaconu
Philip Stier
+ Building high accuracy emulators for scientific simulations with deep neural architecture search 2021 Muhammad Kasim
Duncan Watson‐Parris
Lucia Deaconu
Sophy Oliver
Peter Hatfield
D. H. Froula
Giovanni Gregori
M. J. Jarvis
Samar Khatiwala
Jun Korenaga
+ Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific 2021 Andrew Jesson
Peter Manshausen
Alyson Douglas
Duncan Watson‐Parris
Yarin Gal
Philip Stier
+ Model calibration using ESEm v1.0.0 – an open, scalable Earth System Emulator 2021 Duncan Watson‐Parris
Andrew Williams
Lucia Deaconu
Philip Stier
+ Model calibration using ESEm v1.0.0 -- an open, scalable Earth System Emulator 2021 Duncan Watson‐Parris
Andrew Williams
Lucia Deaconu
Philip Stier
+ PDF Chat Machine learning for weather and climate are worlds apart 2021 Duncan Watson‐Parris
+ Supplementary material to "Aerosol absorption in global models from AeroCom Phase III" 2021 Maria Sand
B. H. Samset
Gunnar Myhre
Jonas Gliß
Susanne E. Bauer
Huisheng Bian
Mian Chin
Ramiro Checa‐Garcia
Paul Ginoux
Zak Kipling
+ PDF Chat RainBench: Towards Global Precipitation Forecasting from Satellite Imagery 2021 Christian Schroeder de Witt
Catherine Tong
Valentina Zantedeschi
Daniele De Martini
Freddie Kalaitzis
Matthew Chantry
Duncan Watson‐Parris
Piotr Biliński
+ Emulating Aerosol Microphysics with Machine Learning 2021 Paula Harder
Duncan Watson‐Parris
Dominik Straßel
Nicolas R. Gauger
Philip Stier
Janis Keuper
+ Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific 2021 Andrew Jesson
Peter Manshausen
Alyson Douglas
Duncan Watson‐Parris
Yarin Gal
Philip Stier
+ Up to two billion times acceleration of scientific simulations with deep neural architecture search 2020 Muhammad Kasim
Duncan Watson‐Parris
Lucia Deaconu
Sophy Oliver
Peter Hatfield
D. H. Froula
Giovanni Gregori
M. J. Jarvis
Samar Khatiwala
Jun Korenaga
+ Building high accuracy emulators for scientific simulations with deep neural architecture search. 2020 Muhammad Kasim
Duncan Watson‐Parris
Lucia Deaconu
Sophy Oliver
Peter Hatfield
D. H. Froula
Giovanni Gregori
M. J. Jarvis
Samar Khatiwala
Jun Korenaga
+ NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations 2020 Paula Harder
William K. Jones
Redouane Lguensat
Shahine Bouabid
James C. Fulton
Dánell Quesada-Chacón
Aris Marcolongo
Sofija Stefanovic
Yuhan Rao
Peter Manshausen
+ RainBench: Towards Global Precipitation Forecasting from Satellite Imagery 2020 Christian Schroeder de Witt
Catherine Tong
Valentina Zantedeschi
Daniele De Martini
Freddie Kalaitzis
Matthew Chantry
Duncan Watson‐Parris
Piotr Biliński
+ Cumulo: A Dataset for Learning Cloud Classes. 2019 Valentina Zantedeschi
Fabrizio Falasca
Alyson Douglas
Richard C. Strange
Matt J. Kusner
Duncan Watson‐Parris
+ Detecting anthropogenic cloud perturbations with deep learning 2019 Duncan Watson‐Parris
Samuel Sutherland
Matthew W. Christensen
Anthony L. Caterini
Dino Sejdinović
Philip Stier
+ Cumulo: A Dataset for Learning Cloud Classes 2019 Valentina Zantedeschi
Fabrizio Falasca
Alyson Douglas
Richard C. Strange
Matt J. Kusner
Duncan Watson‐Parris
+ PDF Chat Carrier localization mechanisms in In<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>Ga<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>N/GaN quantum wells 2011 Duncan Watson‐Parris
M. J. Godfrey
P. Dawson
Rachel A. Oliver
M. J. Galtrey
M. J. Kappers
C. J. Humphreys
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ The frontier of simulation-based inference 2020 K. Cranmer
Johann Brehmer
Gilles Louppe
4
+ PDF Chat Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events 2018 Paul A. O’Gorman
J. G. Dwyer
4
+ Calibrate, emulate, sample 2020 Emmet Cleary
Alfredo Garbuno-Iñigo
Shiwei Lan
Tapio Schneider
Andrew M. Stuart
4
+ PDF Chat Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems 2021 Tom Beucler
Michael S. Pritchard
Stephan Rasp
Jordan Ott
Pierre Baldi
Pierre Gentine
4
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
3
+ Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model 2020 Julien Brajard
Alberto Carrassi
Marc Bocquet
Laurent Bertino
3
+ PDF Chat Constructing Summary Statistics for Approximate Bayesian Computation: Semi-Automatic Approximate Bayesian Computation 2012 Paul Fearnhead
Dennis Prangle
3
+ PDF Chat Deep learning to represent subgrid processes in climate models 2018 Stephan Rasp
Michael S. Pritchard
Pierre Gentine
3
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
3
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
3
+ Mining gold from implicit models to improve likelihood-free inference 2020 Johann Brehmer
Gilles Louppe
Juan Pavez
K. Cranmer
3
+ PDF Chat Machine learning for weather and climate are worlds apart 2021 Duncan Watson‐Parris
2
+ Deep Gaussian Processes 2012 Andreas Damianou
Neil D. Lawrence
2
+ PDF Chat Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity 1967 Syukuro Manabe
R. T. Wetherald
2
+ PDF Chat WeatherBench: A Benchmark Data Set for Data‐Driven Weather Forecasting 2020 Stephan Rasp
Peter Dueben
Sebastian Scher
Jonathan A. Weyn
Soukayna Mouatadid
Nils Thuerey
2
+ Exact Gaussian Processes on a Million Data Points 2019 Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
Andrew Gordon Wilson
2
+ PDF Chat Prognostic Validation of a Neural Network Unified Physics Parameterization 2018 Noah Brenowitz
Christopher S. Bretherton
2
+ The fractional energy balance equation 2021 S. Lovejoy
Roman Procyk
Raphaël Hébert
Lenin Del Rio Amador
2
+ PDF Chat Coupled online learning as a way to tackle instabilities and biases in neural network parameterizations: general algorithms and Lorenz 96 case study (v1.0) 2020 Stephan Rasp
2
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
2
+ PDF Chat Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma 2018 Petros Tzeferacos
A. Rigby
A. F. A. Bott
A. R. Bell
R. Bingham
A. Casner
F. Cattaneo
E. Churazov
J. Emig
Frederico Fiúza
1
+ PDF Chat Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN 2008 Patrick Rinke
M. Winkelnkemper
A. Qteish
D. Bimberg
Jörg Neugebauer
Matthias Scheffler
1
+ PDF Chat COSMIC EMULATION: FAST PREDICTIONS FOR THE GALAXY POWER SPECTRUM 2015 Juliana Kwan
Katrin Heitmann
Salman Habib
Nikhil Padmanabhan
Earl Lawrence
Hal Finkel
Nicholas Frontiere
and Adrian Pope
1
+ CMA-ES for Hyperparameter Optimization of Deep Neural Networks 2016 Ilya Loshchilov
Frank Hutter
1
+ PDF Chat GALAXY CLUSTERING IN THE NEWFIRM MEDIUM BAND SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS AND DARK MATTER HALO MASS AT 1 &lt;<i>z</i>&lt; 2 2011 David A. Wake
Katherine E. Whitaker
Ivo Labbé
Pieter van Dokkum
Marijn Franx
Ryan Quadri
Gabriel Brammer
Mariska Kriek
Britt Lundgren
Danilo Marchesini
1
+ PDF Chat The galaxy–halo connection in the VIDEO survey at 0.5 &lt;<i>z</i>&lt; 1.7 2016 Peter Hatfield
Sam Lindsay
M. J. Jarvis
Boris Häußler
M. Vaccari
A. Verma
1
+ Fully Convolutional Networks for Semantic Segmentation 2016 Evan Shelhamer
Jonathan Long
Trevor Darrell
1
+ PDF Chat Long-Range Persistence in Global Surface Temperatures Explained by Linear Multibox Energy Balance Models 2017 Hege‐Beate Fredriksen
Martin Rypdal
1
+ Hybrid Models with Deep and Invertible Features 2019 Eric Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
1
+ Stochastic Variational Video Prediction 2017 Mohammad Babaeizadeh
Chelsea Finn
Dumitru Erhan
Roy H. Campbell
Sergey Levine
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ PDF Chat Linear Latent Force Models Using Gaussian Processes 2013 Mauricio A. Álvarez
David Luengo
Neil D. Lawrence
1
+ Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation 2015 George Papandreou
Liang-Chieh Chen
Kevin Murphy
Alan Yuille
1
+ Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) 2015 Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
1
+ Estimating Treatment Effects with Causal Forests: An Application 2019 Susan Athey
Stefan Wager
1
+ PDF Chat Free-carrier effects in gallium nitride epilayers: Valence-band dispersion 2001 Philip A. Shields
R. J. Nicholas
F. M. Peeters
B. Beaumont
P. Gibart
1
+ PDF Chat Natural Evolution Strategies 2008 Daan Wierstra
Tom Schaul
Jan Peters
Juergen Schmidhuber
1
+ Impact of Data Normalization on Deep Neural Network for Time Series Forecasting 2018 Samit Bhanja
Abhishek Das
1
+ Hyperparameter Learning via Distributional Transfer 2018 Ho Chung Leon Law
Peilin Zhao
Junzhou Huang
Dino Sejdinović
1
+ PDF Chat Estimating Conditional Average Treatment Effects 2014 Jason Abrevaya
Yu-Chin Hsu
Robert P. Lieli
1
+ PDF Chat Bayesian Interpolation 1992 David Mackay
1
+ Proceedings of the 25th international conference on Machine learning 2008 William W. Cohen
Andrew McCallum
Sam T. Roweis
1
+ Global space–time models for climate ensembles 2013 Stefano Castruccio
Michael L. Stein
1
+ Rates of Convergence for Sparse Variational Gaussian Process Regression 2019 David R. Burt
Carl Edward Rasmussen
Mark van der Wilk
1
+ The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies 2019 Ronen Basri
David Jacobs
Yoni Kasten
Shira Kritchman
1
+ Combining crowd-sourcing and deep learning to explore the meso-scale organization of shallow convection 2019 Stephan Rasp
Hauke Schulz
Sandrine Bony
Björn Stevens
1
+ Handbook of Approximate Bayesian Computation 2018 1
+ PDF Chat Applying Machine Learning to Improve Simulations of a Chaotic Dynamical System Using Empirical Error Correction 2019 P.A. Watson
1
+ UNet++: A Nested U-Net Architecture for Medical Image Segmentation 2018 Zongwei Zhou
Md Mahfuzur Rahman Siddiquee
Nima Tajbakhsh
Jianming Liang
1
+ GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration 2018 Jacob R. Gardner
Geoff Pleiss
David Bindel
Kilian Q. Weinberger
Andrew Gordon Wilson
1