Ben Moseley

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Modern, Efficient, and Differentiable Transport Equation Models using JAX: Applications to Population Balance Equations 2024 Mohammed Alsubeihi
Arthur Jessop
Ben Moseley
ClĂĄudio P. Fonte
Ashwin Kumar Rajagopalan
+ PDF Chat History-Matching of Imbibition Flow in Multiscale Fractured Porous Media Using Physics-Informed Neural Networks (PINNs) 2024 Jassem Abbasi
Ben Moseley
Takeshi Kurotori
Ameya D. Jagtap
Anthony R. Kovscek
Aksel Hiorth
PÄl ØstebÞ Andersen
+ PDF Chat ELM-FBPINN: efficient finite-basis physics-informed neural networks 2024 S. Anderson
Victorita Dolean
Ben Moseley
Jennifer Pestana
+ Multilevel domain decomposition-based architectures for physics-informed neural networks 2024 Victorita Dolean
Alexander Heinlein
Siddhartha Mishra
Ben Moseley
+ PDF Chat Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations 2023 Ben Moseley
Andrew Markham
Tarje Nissen‐Meyer
+ Multilevel domain decomposition-based architectures for physics-informed neural networks 2023 Victorita Dolean
Alexander Heinlein
Siddhartha Mishra
Ben Moseley
+ Finite basis physics-informed neural networks as a Schwarz domain decomposition method 2022 Victorita Dolean
Alexander Heinlein
Siddhartha Mishra
Ben Moseley
+ Solving the wave equation with physics-informed deep learning 2020 Ben Moseley
Andrew Markham
Tarje Nissen‐Meyer
+ Rk-means: Fast Clustering for Relational Data 2019 Ryan R. Curtin
Ben Moseley
Hung Q. Ngo
XuanLong Nguyen
Dan Olteanu
Maximilian Schleich
+ On Coresets for Regularized Loss Minimization 2019 Ryan R. Curtin
Sungjin Im
Ben Moseley
Kirk Pruhs
Alireza Samadian
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data 2019 Luning Sun
Han Gao
Shaowu Pan
Jianxun Wang
3
+ The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies 2019 Ronen Basri
David Jacobs
Yoni Kasten
Shira Kritchman
3
+ PDF Chat Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks 2020 Zhi-Qin John Xu Zhi-Qin John Xu
Yaoyu Zhang Yaoyu Zhang
T. Luo
Yanyang Xiao
Zheng Ma Zheng
3
+ Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data 2019 Yinhao Zhu
Nicholas Zabaras
Phaedon‐Stelios Koutsourelakis
Paris Perdikaris
3
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
3
+ When and why PINNs fail to train: A neural tangent kernel perspective 2021 Sifan Wang
Xinling Yu
Paris Perdikaris
3
+ Towards Understanding the Spectral Bias of Deep Learning 2021 Yuan Cao
Zhiying Fang
Yue Wu
Ding‐Xuan Zhou
Quanquan Gu
3
+ PDF Chat Learning the solution operator of parametric partial differential equations with physics-informed DeepONets 2021 Sifan Wang
Hanwen Wang
Paris Perdikaris
3
+ On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks 2021 Sifan Wang
Hanwen Wang
Paris Perdikaris
3
+ PDF Chat Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations 2021 Suchuan Dong
Zongwei Li
3
+ PDF Chat Distributed learning machines for solving forward and inverse problems in partial differential equations 2020 Vikas Dwivedi
Nishant Parashar
B. Srinivasan
3
+ Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains 2020 Matthew Tancik
Pratul P. Srinivasan
Ben Mildenhall
Sara Fridovich-Keil
Nithin Raghavan
Utkarsh Singhal
Ravi Ramamoorthi
Jonathan T. Barron
Ren Ng
3
+ B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data 2020 Liu Yang
Xuhui Meng
George Em Karniadakis
3
+ PDF Chat D3M: A Deep Domain Decomposition Method for Partial Differential Equations 2019 Ke Li
Kejun Tang
Tianfan Wu
Qifeng Liao
3
+ PDF Chat Nonlinear Preconditioning: How to Use a Nonlinear Schwarz Method to Precondition Newton's Method 2016 Victorita Dolean
Martin J. Gander
Walid Kheriji
FĂ©lix Kwok
Roland Masson
2
+ PDF Chat On the limited memory BFGS method for large scale optimization 1989 Cheng‐Di Dong
Jorge Nocedal
2
+ A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems 1999 Xiao‐Chuan Cai
Marcus Sarkis
2
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
2
+ On the Spectral Bias of Neural Networks 2018 Nasim Rahaman
Aristide Baratin
Devansh Arpit
Felix Draxler
Min Lin
Fred A. Hamprecht
Yoshua Bengio
Aaron Courville
2
+ PDF Chat Solving inverse problems using data-driven models 2019 Simon Arridge
Peter Maaß
Ozan Öktem
Carola‐Bibiane Schönlieb
2
+ NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations 2020 Xiaowei Jin
Shengze Cai
Hui Li
George Em Karniadakis
2
+ Solving the wave equation with physics-informed deep learning 2020 Ben Moseley
Andrew Markham
Tarje Nissen‐Meyer
2
+ Physics informed neural networks for simulating radiative transfer 2021 Siddhartha Mishra
Roberto Molinaro
2
+ Physics-informed neural networks for inverse problems in nano-optics and metamaterials 2020 Yuyao Chen
Lu Lu
George Em Karniadakis
Luca Dal Negro
2
+ Physics-informed learning of governing equations from scarce data 2020 Zhao Chen
Yang Liu
Hao Sun
2
+ PDF Chat Large-Scale Neural Solvers for Partial Differential Equations 2020 Patrick Stiller
Friedrich Bethke
Maximilian Böhme
Richard Pausch
Sunna Torge
Alexander Debus
Jan Vorberger
Michael Bußmann
Nico Hoffmann
2
+ PDF Chat Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations 2023 Ben Moseley
Andrew Markham
Tarje Nissen‐Meyer
2
+ PDF Chat Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems 2022 Jared Willard
Xiaowei Jia
Shaoming Xu
Michael Steinbach
Vipin Kumar
2
+ PDF Chat Physics-informed learning of governing equations from scarce data 2021 Zhao Chen
Yang Liu
Hao Sun
2
+ A coarse space acceleration of deep-DDM 2021 Valentin Mercier
Serge Gratton
Pierre Boudier
2
+ Finite basis physics-informed neural networks as a Schwarz domain decomposition method 2022 Victorita Dolean
Alexander Heinlein
Siddhartha Mishra
Ben Moseley
2
+ PDF Chat Self-adaptive physics-informed neural networks 2022 Levi D. McClenny
Ulisses Braga-Neto
2
+ Towards Understanding the Spectral Bias of Deep Learning 2019 Yuan Cao
Zhiying Fang
Yue Wu
Ding‐Xuan Zhou
Quanquan Gu
1
+ Understanding and mitigating gradient pathologies in physics-informed neural networks 2020 Sifan Wang
Yujun Teng
Paris Perdikaris
1
+ Finding groups in data: an introduction to cluster analysis 1991 1
+ Up to two billion times acceleration of scientific simulations with deep neural architecture search 2020 Muhammad Kasim
Duncan Watson‐Parris
Lucia Deaconu
Sophy Oliver
Peter Hatfield
D. H. Froula
Giovanni Gregori
M. J. Jarvis
Samar Khatiwala
Jun Korenaga
1
+ Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations 2020 Liu Yang
Dongkun Zhang
George Em Karniadakis
1
+ PDF Chat NeuroDiffEq: A Python package for solving differential equations with neural networks 2020 Feiyu Chen
David Sondak
Pavlos Protopapas
Marios Mattheakis
Shuheng Liu
Devansh Agarwal
Marco Di Giovanni
1
+ PDF Chat Regularized k-means clustering of high-dimensional data and its asymptotic consistency 2012 Wei Sun
Junhui Wang
Yixin Fang
1
+ PDF Chat A unified deep artificial neural network approach to partial differential equations in complex geometries 2018 Jens Berg
Kaj Nyström
1
+ PDF Chat hp-VPINNs: Variational physics-informed neural networks with domain decomposition 2020 Ehsan Kharazmi
Zhongqiang Zhang
George Em Karniadakis
1
+ PDF Chat DeepXDE: A Deep Learning Library for Solving Differential Equations 2021 Lu Lu
Xuhui Meng
Zhiping Mao
George Em Karniadakis
1
+ Machine learning and domain decomposition methods -- a survey 2023 Axel Klawonn
Martin Lanser
Janine Weber
1
+ PDF Chat Constraint Solving via Fractional Edge Covers 2014 Martin Grohe
DĂĄniel Marx
1
+ Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs 2020 Siddhartha Mishra
Roberto Molinaro
1
+ PDF Chat Multi-Scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains 2020 Ziqi Liu
Wei Cai
Zhi-Qin John Xu Zhi-Qin John Xu
1
+ PDF Chat Juggling Functions Inside a Database 2017 Mahmoud Abo Khamis
Hung Q. Ngo
Atri Rudra
1
+ Building high accuracy emulators for scientific simulations with deep neural architecture search 2021 Muhammad Kasim
Duncan Watson‐Parris
Lucia Deaconu
Sophy Oliver
Peter Hatfield
D. H. Froula
Giovanni Gregori
M. J. Jarvis
Samar Khatiwala
Jun Korenaga
1
+ First International Symposium on Domain Decomposition Methods for Partial Differential Equations. 1989 J. H. B.
Roland Glowinski
Gene H. Golub
GĂ©rard Meurant
Jacques PĂ©riaux
1
+ PDF Chat Artificial neural networks for solving ordinary and partial differential equations 1998 I.E. Lagaris
Aristidis Likas
D.I. Fotiadis
1