Hai Qian

Follow

Generating author description...

All published works
Action Title Year Authors
+ Emergent invariance and scaling properties in the collective return dynamics of a stock market 2022 Hideyuki Miyahara
Hai Qian
Pavan Holur
Vwani Roychowdhury
+ Interpretable Ranking with Generalized Additive Models 2021 Honglei Zhuang
Xuanhui Wang
Michael Bendersky
Alexander Grushetsky
Yonghui Wu
Petr Mitrichev
Ethan Sterling
Nathan Bell
Walker Ravina
Hai Qian
+ Interpretable Learning-to-Rank with Generalized Additive Models 2020 Honglei Zhuang
Xuanhui Wang
Michael Bendersky
Alexander Grushetsky
Yonghui Wu
Petr Mitrichev
Ethan Sterling
Nathan Bell
Walker Ravina
Hai Qian
+ Toward a better trade-off between performance and fairness with kernel-based distribution matching 2019 Flavien Prost
Hai Qian
Qiuwen Chen
Ed H.
Jilin Chen
Alex Beutel
+ Fairness in Recommendation Ranking through Pairwise Comparisons 2019 Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Li Wei
Yi Wu
Lukasz Heldt
Zhe Zhao
Lichan Hong
Ed H.
+ Fairness in Recommendation Ranking through Pairwise Comparisons 2019 Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Li Wei
Yi Wu
Lukasz Heldt
Zhe Zhao
Lichan Hong
Ed H.
+ Putting Fairness Principles into Practice: Challenges, Metrics, and Improvements 2019 Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Allison Woodruff
Christine Luu
Pierre Kreitmann
Jonathan Bischof
Ed H.
+ Transfer of Machine Learning Fairness across Domains 2019 Candice Schumann
Xuezhi Wang
Alex Beutel
Jilin Chen
Hai Qian
Ed H.
+ Toward a better trade-off between performance and fairness with kernel-based distribution matching 2019 Flavien Prost
Hai Qian
Qiuwen Chen
Ed H.
Jilin Chen
Alex Beutel
+ Fairness in Recommendation Ranking through Pairwise Comparisons 2019 Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Li Wei
Yi Wu
Lukasz Heldt
Zhe Zhao
Lichan Hong
Ed H.
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Mitigating Unwanted Biases with Adversarial Learning 2018 Brian Hu Zhang
Blake Lemoine
Margaret Mitchell
5
+ Learning Adversarially Fair and Transferable Representations 2018 David Madras
Elliot Creager
Toniann Pitassi
Richard S. Zemel
5
+ Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations 2017 Alex Beutel
Ed H.
Jilin Chen
Zhe Zhao
4
+ Equality of Opportunity in Supervised Learning 2016 Moritz Hardt
Eric Price
Nathan Srebro
4
+ PDF Chat Fairness through awareness 2012 Cynthia Dwork
Moritz Hardt
Toniann Pitassi
Omer Reingold
Richard S. Zemel
4
+ On Fairness and Calibration 2017 Geoff Pleiss
Manish Raghavan
Felix Wu
Jon Kleinberg
Kilian Q. Weinberger
3
+ On conditional parity as a notion of non-discrimination in machine learning 2017 Ya’acov Ritov
Yuekai Sun
Ruofei Zhao
3
+ Fairness Constraints: Mechanisms for Fair Classification 2015 Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez-Rodriguez
Krishna P. Gummadi
3
+ PDF Chat Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification 2019 Daniel Borkan
Lucas Dixon
Jeffrey Sorensen
Nithum Thain
Lucy Vasserman
2
+ PDF Chat Assessing calibration of prognostic risk scores 2013 Cynthia S. Crowson
Elizabeth J. Atkinson
Terry M. Therneau
2
+ Generalized Additive Models 1986 Trevor Hastie
Robert Tibshirani
2
+ PDF Chat FA*IR 2017 Meike Zehlike
Francesco Bonchi
Carlos Castillo
Sara Hajian
M. Megahed
Ricardo Baeza‐Yates
2
+ PDF Chat Component selection and smoothing in multivariate nonparametric regression 2006 Yi Lin
Hao Helen Zhang
2
+ Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness 2017 Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
2
+ PDF Chat Axiomatic Interpretability for Multiclass Additive Models 2019 Xuezhou Zhang
Sarah Tan
Paul Koch
Yin Lou
Urszula Chajewska
Rich Caruana
2
+ Censoring Representations with an Adversary 2015 Harrison Edwards
Amos Storkey
2
+ A comparison of methods for the fitting of generalized additive models 2007 Harald Binder
Gerhard Tutz
2
+ Fairness of Exposure in Rankings 2018 Ashudeep Singh
Thorsten Joachims
2
+ Unbiased Comparative Evaluation of Ranking Functions 2016 Tobias Schnabel
Adith Swaminathan
Peter I. Frazier
Thorsten Joachims
2
+ PDF Chat High-dimensional additive modeling 2009 Lukas Meier
Sara van de Geer
Peter BĂŒhlmann
2
+ Unbiased Learning-to-Rank with Biased Feedback 2017 Thorsten Joachims
Adith Swaminathan
Tobias Schnabel
2
+ Penalizing Unfairness in Binary Classification 2017 Yahav Bechavod
Katrina Ligett
2
+ Domain Separation Networks 2016 Konstantinos Bousmalis
George Trigeorgis
Nathan Silberman
Dilip Krishnan
Dumitru Erhan
2
+ Beyond Sparsity: Tree Regularization of Deep Models for Interpretability 2017 Mike Wu
Michael C. Hughes
Sonali Parbhoo
Maurizio Zazzi
Volker Röth
Finale Doshi‐Velez
2
+ PDF Chat Inherent Tradeoffs in the Fair Determination of Risk Scores 2023 Manish Raghavan
2
+ PDF Chat Techniques for interpretable machine learning 2019 Mengnan Du
Ninghao Liu
Xia Hu
2
+ PDF Chat Domain-Adversarial Training of Neural Networks 2017 Yaroslav Ganin
Evgeniya Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
Mario Marchand
Victor Lempitsky
2
+ PDF Chat Exploring author gender in book rating and recommendation 2018 Michael D. Ekstrand
Mucun Tian
Mohammed R. Imran Kazi
Hoda Mehrpouyan
Daniel Kluver
2
+ Estimating Position Bias without Intrusive Interventions 2019 Aman Agarwal
Ivan Zaitsev
Xuanhui Wang
Cheng Li
Marc Najork
Thorsten Joachims
2
+ PDF Chat Degenerate Feedback Loops in Recommender Systems 2019 Ray Jiang
Silvia Chiappa
Tor Lattimore
Andrås György
Pushmeet Kohli
2
+ PDF Chat Sparse Additive Models 2009 Pradeep Ravikumar
John Lafferty
Han Liu
Larry Wasserman
2
+ Learning Fair Classifiers 2015 Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez-Rodriguez
Krishna P. Gummadi
2
+ PDF Chat Sparse Partially Linear Additive Models 2015 Yin Lou
Jacob Bien
Rich Caruana
Johannes Gehrke
2
+ Fairness-Aware Tensor-Based Recommendation 2018 Ziwei Zhu
Xia Hu
James Caverlee
2
+ The Frontiers of Fairness in Machine Learning 2018 Alexandra Chouldechova
Aaron Roth
2
+ TF-Ranking 2019 Rama Kumar Pasumarthi
Sebastian Bruch
Xuanhui Wang
Cheng Li
Michael Bendersky
Marc Najork
Jan Pfeifer
Nadav Golbandi
Rohan Anil
S. Wolf
2
+ Learning Transferable Features with Deep Adaptation Networks 2015 Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
2
+ Neural Collaborative Filtering 2017 Xiangnan He
Lizi Liao
Hanwang Zhang
Liqiang Nie
Xia Hu
Tat‐Seng Chua
2
+ Learning Important Features Through Propagating Activation Differences 2017 Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
2
+ Equality of Opportunity in Supervised Learning 2016 Moritz Hardt
Eric Price
Nathan Srebro
1
+ Is Attention Interpretable? 2019 Sofia Serrano
Noah A. Smith
1
+ "Why Should I Trust You?": Explaining the Predictions of Any Classifier 2016 Marco TĂșlio Ribeiro
Sameer Singh
Carlos Guestrin
1
+ Top-K Off-Policy Correction for a REINFORCE Recommender System 2018 Minmin Chen
Alex Beutel
Paul Covington
Sagar Jain
Francois Belletti
Ed H.
1
+ Recommendations as Treatments: Debiasing Learning and Evaluation 2016 Tobias Schnabel
Adith Swaminathan
Ashudeep Singh
Navin Chandak
Thorsten Joachims
1
+ Domain Separation Networks 2016 Konstantinos Bousmalis
George Trigeorgis
Nathan Silberman
Dilip Krishnan
Dumitru Erhan
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ Censoring Representations with an Adversary 2015 Harrison Edwards
Amos Storkey
1
+ Avoiding Discrimination through Causal Reasoning 2017 Niki Kilbertus
Mateo Rojas-Carulla
Giambattista Parascandolo
Moritz Hardt
Dominik Janzing
Bernhard Schölkopf
1
+ PDF Chat Explaining Explanations: An Overview of Interpretability of Machine Learning 2018 Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
1
+ Towards Robust and Privacy-preserving Text Representations 2018 Yitong Li
Timothy Baldwin
Trevor Cohn
1