+
|
Mitigating Unwanted Biases with Adversarial Learning
|
2018
|
Brian Hu Zhang
Blake Lemoine
Margaret Mitchell
|
5
|
+
|
Learning Adversarially Fair and Transferable Representations
|
2018
|
David Madras
Elliot Creager
Toniann Pitassi
Richard S. Zemel
|
5
|
+
|
Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations
|
2017
|
Alex Beutel
Ed H.
Jilin Chen
Zhe Zhao
|
4
|
+
|
Equality of Opportunity in Supervised Learning
|
2016
|
Moritz Hardt
Eric Price
Nathan Srebro
|
4
|
+
PDF
Chat
|
Fairness through awareness
|
2012
|
Cynthia Dwork
Moritz Hardt
Toniann Pitassi
Omer Reingold
Richard S. Zemel
|
4
|
+
|
On Fairness and Calibration
|
2017
|
Geoff Pleiss
Manish Raghavan
Felix Wu
Jon Kleinberg
Kilian Q. Weinberger
|
3
|
+
|
On conditional parity as a notion of non-discrimination in machine learning
|
2017
|
Yaâacov Ritov
Yuekai Sun
Ruofei Zhao
|
3
|
+
|
Fairness Constraints: Mechanisms for Fair Classification
|
2015
|
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez-Rodriguez
Krishna P. Gummadi
|
3
|
+
PDF
Chat
|
Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification
|
2019
|
Daniel Borkan
Lucas Dixon
Jeffrey Sorensen
Nithum Thain
Lucy Vasserman
|
2
|
+
PDF
Chat
|
Assessing calibration of prognostic risk scores
|
2013
|
Cynthia S. Crowson
Elizabeth J. Atkinson
Terry M. Therneau
|
2
|
+
|
Generalized Additive Models
|
1986
|
Trevor Hastie
Robert Tibshirani
|
2
|
+
PDF
Chat
|
FA*IR
|
2017
|
Meike Zehlike
Francesco Bonchi
Carlos Castillo
Sara Hajian
M. Megahed
Ricardo BaezaâYates
|
2
|
+
PDF
Chat
|
Component selection and smoothing in multivariate nonparametric regression
|
2006
|
Yi Lin
Hao Helen Zhang
|
2
|
+
|
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
|
2017
|
Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
|
2
|
+
PDF
Chat
|
Axiomatic Interpretability for Multiclass Additive Models
|
2019
|
Xuezhou Zhang
Sarah Tan
Paul Koch
Yin Lou
Urszula Chajewska
Rich Caruana
|
2
|
+
|
Censoring Representations with an Adversary
|
2015
|
Harrison Edwards
Amos Storkey
|
2
|
+
|
A comparison of methods for the fitting of generalized additive models
|
2007
|
Harald Binder
Gerhard Tutz
|
2
|
+
|
Fairness of Exposure in Rankings
|
2018
|
Ashudeep Singh
Thorsten Joachims
|
2
|
+
|
Unbiased Comparative Evaluation of Ranking Functions
|
2016
|
Tobias Schnabel
Adith Swaminathan
Peter I. Frazier
Thorsten Joachims
|
2
|
+
PDF
Chat
|
High-dimensional additive modeling
|
2009
|
Lukas Meier
Sara van de Geer
Peter BĂŒhlmann
|
2
|
+
|
Unbiased Learning-to-Rank with Biased Feedback
|
2017
|
Thorsten Joachims
Adith Swaminathan
Tobias Schnabel
|
2
|
+
|
Penalizing Unfairness in Binary Classification
|
2017
|
Yahav Bechavod
Katrina Ligett
|
2
|
+
|
Domain Separation Networks
|
2016
|
Konstantinos Bousmalis
George Trigeorgis
Nathan Silberman
Dilip Krishnan
Dumitru Erhan
|
2
|
+
|
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
|
2017
|
Mike Wu
Michael C. Hughes
Sonali Parbhoo
Maurizio Zazzi
Volker Röth
Finale DoshiâVelez
|
2
|
+
PDF
Chat
|
Inherent Tradeoffs in the Fair Determination of Risk Scores
|
2023
|
Manish Raghavan
|
2
|
+
PDF
Chat
|
Techniques for interpretable machine learning
|
2019
|
Mengnan Du
Ninghao Liu
Xia Hu
|
2
|
+
PDF
Chat
|
Domain-Adversarial Training of Neural Networks
|
2017
|
Yaroslav Ganin
Evgeniya Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
Mario Marchand
Victor Lempitsky
|
2
|
+
PDF
Chat
|
Exploring author gender in book rating and recommendation
|
2018
|
Michael D. Ekstrand
Mucun Tian
Mohammed R. Imran Kazi
Hoda Mehrpouyan
Daniel Kluver
|
2
|
+
|
Estimating Position Bias without Intrusive Interventions
|
2019
|
Aman Agarwal
Ivan Zaitsev
Xuanhui Wang
Cheng Li
Marc Najork
Thorsten Joachims
|
2
|
+
PDF
Chat
|
Degenerate Feedback Loops in Recommender Systems
|
2019
|
Ray Jiang
Silvia Chiappa
Tor Lattimore
Andrås György
Pushmeet Kohli
|
2
|
+
PDF
Chat
|
Sparse Additive Models
|
2009
|
Pradeep Ravikumar
John Lafferty
Han Liu
Larry Wasserman
|
2
|
+
|
Learning Fair Classifiers
|
2015
|
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez-Rodriguez
Krishna P. Gummadi
|
2
|
+
PDF
Chat
|
Sparse Partially Linear Additive Models
|
2015
|
Yin Lou
Jacob Bien
Rich Caruana
Johannes Gehrke
|
2
|
+
|
Fairness-Aware Tensor-Based Recommendation
|
2018
|
Ziwei Zhu
Xia Hu
James Caverlee
|
2
|
+
|
The Frontiers of Fairness in Machine Learning
|
2018
|
Alexandra Chouldechova
Aaron Roth
|
2
|
+
|
TF-Ranking
|
2019
|
Rama Kumar Pasumarthi
Sebastian Bruch
Xuanhui Wang
Cheng Li
Michael Bendersky
Marc Najork
Jan Pfeifer
Nadav Golbandi
Rohan Anil
S. Wolf
|
2
|
+
|
Learning Transferable Features with Deep Adaptation Networks
|
2015
|
Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
|
2
|
+
|
Neural Collaborative Filtering
|
2017
|
Xiangnan He
Lizi Liao
Hanwang Zhang
Liqiang Nie
Xia Hu
TatâSeng Chua
|
2
|
+
|
Learning Important Features Through Propagating Activation Differences
|
2017
|
Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
|
2
|
+
|
Equality of Opportunity in Supervised Learning
|
2016
|
Moritz Hardt
Eric Price
Nathan Srebro
|
1
|
+
|
Is Attention Interpretable?
|
2019
|
Sofia Serrano
Noah A. Smith
|
1
|
+
|
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
|
2016
|
Marco TĂșlio Ribeiro
Sameer Singh
Carlos Guestrin
|
1
|
+
|
Top-K Off-Policy Correction for a REINFORCE Recommender System
|
2018
|
Minmin Chen
Alex Beutel
Paul Covington
Sagar Jain
Francois Belletti
Ed H.
|
1
|
+
|
Recommendations as Treatments: Debiasing Learning and Evaluation
|
2016
|
Tobias Schnabel
Adith Swaminathan
Ashudeep Singh
Navin Chandak
Thorsten Joachims
|
1
|
+
|
Domain Separation Networks
|
2016
|
Konstantinos Bousmalis
George Trigeorgis
Nathan Silberman
Dilip Krishnan
Dumitru Erhan
|
1
|
+
|
A Unified Approach to Interpreting Model Predictions
|
2017
|
Scott Lundberg
SuâIn Lee
|
1
|
+
|
Censoring Representations with an Adversary
|
2015
|
Harrison Edwards
Amos Storkey
|
1
|
+
|
Avoiding Discrimination through Causal Reasoning
|
2017
|
Niki Kilbertus
Mateo Rojas-Carulla
Giambattista Parascandolo
Moritz Hardt
Dominik Janzing
Bernhard Schölkopf
|
1
|
+
PDF
Chat
|
Explaining Explanations: An Overview of Interpretability of Machine Learning
|
2018
|
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
|
1
|
+
|
Towards Robust and Privacy-preserving Text Representations
|
2018
|
Yitong Li
Timothy Baldwin
Trevor Cohn
|
1
|