Author Description

Login to generate an author description

Ask a Question About This Mathematician

Commonly Cited References

Homotopy theory can be developed synthetically in homotopy type theory, using types to describe spaces, the identity type to describe paths in a space, and iterated identity types to describe … Homotopy theory can be developed synthetically in homotopy type theory, using types to describe spaces, the identity type to describe paths in a space, and iterated identity types to describe higher-dimensional paths.While some aspects of homotopy theory have been developed synthetically and formalized in proof assistants, some seemingly easy examples have proved difficult because the required manipulations of paths becomes complicated.In this paper, we describe a cubical approach to developing homotopy theory within type theory.The identity type is complemented with higher-dimensional cube types, such as a type of squares, dependent on four points and four lines, and a type of three-dimensional cubes, dependent on the boundary of a cube.Path-over-a-path types and higher generalizations are used to describe cubes in a fibration over a cube in the base.These higher-dimensional cube and path-over types can be defined from the usual identity type, but isolating them as independent conceptual abstractions has allowed for the formalization of some previously difficult examples.
In this paper we construct new categorical models for the identity types of Martin-Löf type theory, in the categories Top of topological spaces and SSet of simplicial sets. We do … In this paper we construct new categorical models for the identity types of Martin-Löf type theory, in the categories Top of topological spaces and SSet of simplicial sets. We do so building on earlier work of Awodey and Warren [2009], which has suggested that a suitable environment for the interpretation of identity types should be a category equipped with a weak factorization system in the sense of Bousfield--Quillen. It turns out that this is not quite enough for a sound model, due to some subtle coherence issues concerned with stability under substitution; and so our first task is to introduce a slightly richer structure, which we call a homotopy-theoretic model of identity types , and to prove that this is sufficient for a sound interpretation. Now, although both Top and SSet are categories endowed with a weak factorization system---and indeed, an entire Quillen model structure---exhibiting the additional structure required for a homotopy-theoretic model is quite hard to do. However, the categories we are interested in share a number of common features, and abstracting these leads us to introduce the notion of a path object category . This is a relatively simple axiomatic framework, which is nonetheless sufficiently strong to allow the construction of homotopy-theoretic models. Now by exhibiting suitable path object structures on Top and SSet , we endow those categories with the structure of a homotopy-theoretic model and, in this way, obtain the desired topological and simplicial models of identity types.
It is shown that an intuitionistic model of set theory with the axiom of choice has to be a classical one. It is shown that an intuitionistic model of set theory with the axiom of choice has to be a classical one.
Homotopy Type Theory is a new field of mathematics based on the recently-discovered correspondence between Martin-Löf's constructive type theory and abstract homotopy theory. We have a powerful interplay between these … Homotopy Type Theory is a new field of mathematics based on the recently-discovered correspondence between Martin-Löf's constructive type theory and abstract homotopy theory. We have a powerful interplay between these disciplines - we can use geometric intuition to formulate new concepts in type theory and, conversely, use type-theoretic machinery to verify and often simplify existing mathematical proofs.
Recent work on homotopy type theory exploits an exciting new correspondence between Martin-Lof's dependent type theory and the mathematical disciplines of category theory and homotopy theory. The mathematics suggests new … Recent work on homotopy type theory exploits an exciting new correspondence between Martin-Lof's dependent type theory and the mathematical disciplines of category theory and homotopy theory. The mathematics suggests new principles to add to type theory, while the type theory can be used in novel ways to do computer-checked proofs in a proof assistant. In this paper, we formalize a basic result in algebraic topology, that the fundamental group of the circle is the integers. Our proof illustrates the new features of homotopy type theory, such as higher inductive types and Voevodsky's univalence axiom. It also introduces a new method for calculating the path space of a type, which has proved useful in many other examples.
Homotopy type theory is a new branch of mathematics, based on a recently discovered connection between homotopy theory and type theory, which brings new ideas into the very foundation of … Homotopy type theory is a new branch of mathematics, based on a recently discovered connection between homotopy theory and type theory, which brings new ideas into the very foundation of mathematics. On the one hand, Voevodsky's subtle and beautiful "univalence axiom" implies that isomorphic structures can be identified. On the other hand, "higher inductive types" provide direct, logical descriptions of some of the basic spaces and constructions of homotopy theory. Both are impossible to capture directly in classical set-theoretic foundations, but when combined in homotopy type theory, they permit an entirely new kind of "logic of homotopy types". This suggests a new conception of foundations of mathematics, with intrinsic homotopical content, an "invariant" conception of the objects of mathematics -- and convenient machine implementations, which can serve as a practical aid to the working mathematician. This book is intended as a first systematic exposition of the basics of the resulting "Univalent Foundations" program, and a collection of examples of this new style of reasoning -- but without requiring the reader to know or learn any formal logic, or to use any computer proof assistant.
Homotopy type theory is an extension of Martin-Löf type theory with principles inspired by category theory and homotopy theory. With these extensions, type theory can be used to construct proofs … Homotopy type theory is an extension of Martin-Löf type theory with principles inspired by category theory and homotopy theory. With these extensions, type theory can be used to construct proofs of homotopy-theoretic theorems, in a way that is very amenable to computer-checked proofs in proof assistants such as Coq and Agda. In this paper, we give a computer-checked construction of Eilenberg-MacLane spaces. For an abelian group G, an Eilenberg-MacLane space K(G,n) is a space (type) whose nth homotopy group is G, and whose homotopy groups are trivial otherwise. These spaces are a basic tool in algebraic topology; for example, they can be used to build spaces with specified homotopy groups, and to define the notion of cohomology with coefficients in G. Their construction in type theory is an illustrative example, which ties together many of the constructions and methods that have been used in homotopy type theory so far.
A theory of data types based on category theory is presented. We organize data types under a new categorical notion of F,G-dialgebras which is an extension of the notion of … A theory of data types based on category theory is presented. We organize data types under a new categorical notion of F,G-dialgebras which is an extension of the notion of adjunctions as well as that of T-algebras. T-algebras are also used in domain theory, but while domain theory needs some primitive data types, like products, to start with, we do not need any. Products, coproducts and exponentiations (i.e. function spaces) are defined exactly like in category theory using adjunctions. F,G-dialgebras also enable us to define the natural number object, the object for finite lists and other familiar data types in programming. Furthermore, their symmetry allows us to have the dual of the natural number object and the object for infinite lists (or lazy lists). We also introduce a programming language in a categorical style using F,G-dialgebras as its data type declaration mechanism. We define the meaning of the language operationally and prove that any program terminates using Tait's computability method.
In homotopy type theory, we construct the propositional truncation as a colimit, using only non-recursive higher inductive types (HITs). This is a first step towards reducing recursive HITs to non-recursive … In homotopy type theory, we construct the propositional truncation as a colimit, using only non-recursive higher inductive types (HITs). This is a first step towards reducing recursive HITs to non-recursive HITs. This construction gives a characterization of functions from the propositional truncation to an arbitrary type, extending the universal property of the propositional truncation. We have fully formalized all the results in a new proof assistant, Lean.
In homotopy type theory (HoTT), all constructions are necessarily stable under homotopy equivalence. This has shortcomings: for example, it is believed that it is impossible to define a type of … In homotopy type theory (HoTT), all constructions are necessarily stable under homotopy equivalence. This has shortcomings: for example, it is believed that it is impossible to define a type of semi-simplicial types. More generally, it is difficult and often impossible to handle towers of coherences. To address this, we propose a 2-level theory which features both strict and weak equality. This can essentially be represented as two type theories: an one, containing a strict equality type former, and an one, which is some version of HoTT. Our type theory is inspired by Voevosky's suggestion of a homotopy type system (HTS) which currently refers to a range of ideas. A core insight of our proposal is that we no not need any form of equality reflection in order to achieve what HTS was suggested for. Instead, having unique identity proofs in the outer type theory is sufficient, and it also has the meta-theoretical advantage of not breaking decidability of type checking. The inner theory can be an easily justifiable extensions of HoTT, allowing the construction of infinite structures which are considered impossible in plain HoTT. Alternatively, we can set the inner theory to be exactly the current standard formulation of HoTT, in which case our system can be thought of as a type-theoretic framework for working with schematic definitions in HoTT. As demonstrations, we define semi-simplicial types and formalise constructions of Reedy fibrant diagrams.
This paper continues investigations in "synthetic homotopy theory": the use of homotopy type theory to give machine-checked proofs of constructions from homotopy theory We present a mechanized proof of the … This paper continues investigations in "synthetic homotopy theory": the use of homotopy type theory to give machine-checked proofs of constructions from homotopy theory We present a mechanized proof of the Blakers-Massey connectivity theorem, a result relating the higher-dimensional homotopy groups of a pushout type (roughly, a space constructed by gluing two spaces along a shared subspace) to those of the components of the pushout. This theorem gives important information about the pushout type, and has a number of useful corollaries, including the Freudenthal suspension theorem, which has been studied in previous formalizations. The new proof is more elementary than existing ones in abstract homotopy-theoretic settings, and the mechanization is concise and high-level, thanks to novel combinations of ideas from homotopy theory and type theory.
Higher inductive types (HITs) in homotopy type theory are a powerful generalization of inductive types. Not only can they have ordinary constructors to define elements, but also higher constructors to … Higher inductive types (HITs) in homotopy type theory are a powerful generalization of inductive types. Not only can they have ordinary constructors to define elements, but also higher constructors to define equalities (paths). We say that a HIT H is non-recursive if its constructors do not quantify over elements or paths in H. The advantage of non-recursive HITs is that their elimination principles are easier to apply than those of general HITs.
The goal of this thesis is to prove that π4(S3) ≃ Z/2Z in homotopy type theory. In particular it is a constructive and purely homotopy-theoretic proof. We first recall the … The goal of this thesis is to prove that π4(S3) ≃ Z/2Z in homotopy type theory. In particular it is a constructive and purely homotopy-theoretic proof. We first recall the basic concepts of homotopy type theory, and we prove some well-known results about the homotopy groups of spheres: the computation of the homotopy groups of the circle, the triviality of those of the form πk(Sn) with k < n, and the construction of the Hopf fibration. We then move to more advanced tools. In particular, we define the James construction which allows us to prove the Freudenthal suspension theorem and the fact that there exists a natural number n such that π4(S3) ≃ Z/nZ. Then we study the smash product of spheres, we construct the cohomology ring of a space, and we introduce the Hopf invariant, allowing us to narrow down the n to either 1 or 2. The Hopf invariant also allows us to prove that all the groups of the form π4n−1(S2n) are infinite. Finally we construct the Gysin exact sequence, allowing us to compute the cohomology of CP2 and to prove that π4(S3) ≃ Z/2Z and that more generally πn+1(Sn) ≃ Z/2Z for every n ≥ 3
We present Voevodsky's construction of a model of univalent type theory in the category of simplicial sets. To this end, we first give a general technique for constructing categorical models … We present Voevodsky's construction of a model of univalent type theory in the category of simplicial sets. To this end, we first give a general technique for constructing categorical models of dependent type theory, using universes to obtain coherence. We then construct a (weakly) universal Kan fibration, and use it to exhibit a model in simplicial sets. Lastly, we introduce the Univalence Axiom, in several equivalent formulations, and show that it holds in our model. As a corollary, we conclude that Martin-Lof type theory with one univalent universe (formulated in terms of contextual categories) is at least as consistent as ZFC with two inaccessible cardinals.
Capretta's delay monad can be used to model partial computations, but it has the wrong notion of built-in equality, strong bisimilarity. An alternative is to quotient the delay monad by … Capretta's delay monad can be used to model partial computations, but it has the wrong notion of built-in equality, strong bisimilarity. An alternative is to quotient the delay monad by the right notion of equality, weak bisimilarity. However, recent work by Chapman et al. suggests that it is impossible to define a monad structure on the resulting construction in common forms of type theory without assuming (instances of) the axiom of countable choice. Using an idea from homotopy type theory - a higher inductive-inductive type - we construct a partiality monad without relying on countable choice. We prove that, in the presence of countable choice, our partiality monad is equivalent to the delay monad quotiented by weak bisimilarity. Furthermore we outline several applications.
This is the text of my talk at CMU on Feb. 4, 2010 were I gave the second public presentation of the Univalence Axiom (called "equivalence axiom" in the text). … This is the text of my talk at CMU on Feb. 4, 2010 were I gave the second public presentation of the Univalence Axiom (called "equivalence axiom" in the text). The first presentation of the axiom was in a lecture at LMU Munich in November 2009.
This is an introduction to type theory, synthetic topology, and homotopy type theory from a category-theoretic and topological point of view, written as a chapter for the book New Spaces … This is an introduction to type theory, synthetic topology, and homotopy type theory from a category-theoretic and topological point of view, written as a chapter for the book New Spaces for Mathematics and Physics (ed. Gabriel Catren and Mathieu Anel).
Homotopy type theory is a version of Martin-Löf type theory taking advantage of its homotopical models. In particular, we can use and construct objects of homotopy theory and reason about … Homotopy type theory is a version of Martin-Löf type theory taking advantage of its homotopical models. In particular, we can use and construct objects of homotopy theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key players in homotopy theory, as certain higher inductive types in homotopy type theory. The classical definition of ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> , as the quotient space identifying antipodal points of the n-sphere, does not translate directly to homotopy type theory. Instead, we define ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> by induction on n simultaneously with its tautological bundle of 2-element sets. As the base case, we take ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> to be the empty type. In the inductive step, we take ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n+1</sup> to be the mapping cone of the projection map of the tautological bundle of ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> , and we use its universal property and the univalence axiom to define the tautological bundle on ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n+1</sup> . By showing that the total space of the tautological bundle of ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> is the n-sphere S <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> , we retrieve the classical description of ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n+1</sup> as ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> with an (n + 1)-disk attached to it. The infinite dimensional real projective space ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sup> , defined as the sequential colimit of ℝP <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> with the canonical inclusion maps, is equivalent to the Eilenberg-MacLane space K(ℤ/2ℤ, 1), which here arises as the subtype of the universe consisting of 2-element types. Indeed, the infinite dimensional projective space classifies the 0-sphere bundles, which one can think of as synthetic line bundles. These constructions in homotopy type theory further illustrate the utility of homotopy type theory, including the interplay of type theoretic and homotopy theoretic ideas.
A higher inductive type of level 1 (a 1-hit) has constructors for points and paths only, whereas a higher inductive type of level 2 (a 2-hit) has constructors for surfaces … A higher inductive type of level 1 (a 1-hit) has constructors for points and paths only, whereas a higher inductive type of level 2 (a 2-hit) has constructors for surfaces too. We restrict attention to finitary higher inductive types and present general schemata for the types of their point, path, and surface constructors. We also derive the elimination and equality rules from the types of constructors for 1-hits and 2-hits. Moreover, we construct a groupoid model for dependent type theory with 2-hits and point out that we obtain a setoid model for dependent type theory with 1-hits by truncating the groupoid model.
This paper contributes to recent investigations of the use of homotopy type theory to give machine-checked proofs of constructions from homotopy theory. We present a mechanized proof of a result … This paper contributes to recent investigations of the use of homotopy type theory to give machine-checked proofs of constructions from homotopy theory. We present a mechanized proof of a result called the Blakers-Massey connectivity theorem, which relates the higher-dimensional loop structures of two spaces sharing a common part (represented by a pushout type, which is a generalization of a disjoint sum type) to those of the common part itself. This theorem gives important information about the pushout type, and has a number of useful corollaries, including the Freudenthal suspension theorem, which was used in previous formalizations. The proof is more direct than existing ones that apply in general category-theoretic settings for homotopy theory, and its mechanization is concise and high-level, due to novel combinations of ideas from homotopy theory and from type theory.
Higher inductive types are a class of type-forming rules, introduced to provide basic (and not-so-basic) homotopy-theoretic constructions in a type-theoretic style. They have proven very fruitful for the "synthetic" development … Higher inductive types are a class of type-forming rules, introduced to provide basic (and not-so-basic) homotopy-theoretic constructions in a type-theoretic style. They have proven very fruitful for the "synthetic" development of homotopy theory within type theory, as well as in formalizing ordinary set-level mathematics in type theory. In this article, we construct models of a wide range of higher inductive types in a fairly wide range of settings. We introduce the notion of cell monad with parameters: a semantically-defined scheme for specifying homotopically well-behaved notions of structure. We then show that any suitable model category has *weakly stable typal initial algebras* for any cell monad with parameters. When combined with the local universes construction to obtain strict stability, this specializes to give models of specific higher inductive types, including spheres, the torus, pushout types, truncations, the James construction, and general localisations. Our results apply in any sufficiently nice Quillen model category, including any right proper, simplicially locally cartesian closed, simplicial Cisinski model category (such as simplicial sets) and any locally presentable locally cartesian closed category (such as sets) with its trivial model structure. In particular, any locally presentable locally cartesian closed $(\infty,1)$-category is presented by some model category to which our results apply.
This paper presents a novel connection between homotopical algebra and mathematical logic. It is shown that a form of intensional type theory is valid in any Quillen model category, generalizing … This paper presents a novel connection between homotopical algebra and mathematical logic. It is shown that a form of intensional type theory is valid in any Quillen model category, generalizing the Hofmann-Streicher groupoid model of Martin-Loef type theory.
The theory of types with which we shall be concerned is intended to be a full scale system for formalizing intuitionistic mathematics as developed, for example, in the book by … The theory of types with which we shall be concerned is intended to be a full scale system for formalizing intuitionistic mathematics as developed, for example, in the book by Bishop 1967. The language of the theory is richer than the language of first order predicate logic. This makes it possible to strengthen the axioms for existence and disjunction. In the case of existence, the possibility of strengthening the usual elimination rule seems first to have been indicated by Howard 1969, whose proposed axioms are special cases of the existential elimination rule of the present theory. Furthermore, there is a reflection principle which links the generation of objects and types and plays somewhat the same role for the present theory as does the replacement axiom for Zermelo-Fraenkel set theory. An earlier, not yet conclusive, attempt at formulating a theory of this kind was made by Scott 1970. Also related, although less closely, are the type and logic free theories of constructions of Kreisel 1962 and 1965 and Goodman 1970. In its first version, the present theory was based on the strongly impredicative axiom that there is a type of all types whatsoever, which is at the same time a type and an object of that type. This axiom had to be abandoned, however, after it was shown to lead to a contradiction by Jean Yves Girard. I am very grateful to him for showing me his paradox. The change that it necessitated is so drastic that my theory no longer contains intuitionistic simple type theory as it originally did. Instead, its proof theoretic strength should be close to that of predicative analysis. Mathematical objects and their types. We shall think of mathematical objects or constructions. Every mathematical object is of a certain kind or type. Better, a mathematical object is always given together with its type, that is, it is not just an object, it is an object of a certain type.