Nagarajan Natarajan

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Plan$\times$RAG: Planning-guided Retrieval Augmented Generation 2024 Prakhar Verma
Sukruta Prakash Midigeshi
Gaurav Sinha
Arno Solin
Nagarajan Natarajan
Amit Sharma
+ PDF Chat ASTRA: Accurate and Scalable ANNS-based Training of Extreme Classifiers 2024 Sonu Mehta
Jayashree Mohan
Nagarajan Natarajan
Ramachandran Ramjee
Manik Varma
+ PDF Chat CROSS-JEM: Accurate and Efficient Cross-encoders for Short-text Ranking Tasks 2024 Bhawna Paliwal
Deepak Kumar Saini
Mudit Dhawan
Siddarth Asokan
Nagarajan Natarajan
Surbhi Aggarwal
Pankaj Malhotra
Jian Jiao
Manik Varma
+ PDF Chat MASAI: Modular Architecture for Software-engineering AI Agents 2024 Daman Arora
Atharv Sonwane
N. K. Wadhwa
Abhav Mehrotra
Saiteja Utpala
Ramakrishna Bairi
Aditya Kanade
Nagarajan Natarajan
+ PDF Chat Task Facet Learning: A Structured Approach to Prompt Optimization 2024 Gurusha Juneja
Nagarajan Natarajan
Hua Li
Jian Jiao
Amit Sharma
+ PDF Chat Provably Robust DPO: Aligning Language Models with Noisy Feedback 2024 Sayak Ray Chowdhury
Anush Kini
Nagarajan Natarajan
+ PDF Chat NoFunEval: Funny How Code LMs Falter on Requirements Beyond Functional Correctness 2024 Manav Singhal
Tushar Aggarwal
Abhijeet Awasthi
Nagarajan Natarajan
Aditya Kanade
+ PDF Chat Simulating Network Paths with Recurrent Buffering Units 2023 Divyam Anshumaan
Sriram Balasubramanian
Shubham Tiwari
Nagarajan Natarajan
Sundararajan Sellamanickam
Venkat N. Padmanabhan
+ StaticFixer: From Static Analysis to Static Repair 2023 Naman Jain
Shubham Gandhi
Atharv Sonwane
Aditya Kanade
Nagarajan Natarajan
Suresh Parthasarathy
Sriram K. Rajamani
Rahul Sharma
+ Frustrated with Code Quality Issues? LLMs can Help! 2023 N. K. Wadhwa
Jui Pradhan
Atharv Sonwane
Surya Prakash Sahu
Nagarajan Natarajan
Aditya Kanade
Suresh Parthasarathy
Sriram K. Rajamani
+ Differentially Private Reward Estimation with Preference Feedback 2023 Sayak Ray Chowdhury
Xingyu Zhou
Nagarajan Natarajan
+ GAR-meets-RAG Paradigm for Zero-Shot Information Retrieval 2023 Daman Arora
Anush Kini
Sayak Ray Chowdhury
Nagarajan Natarajan
Gaurav Sinha
Amit Sharma
+ Simulating Network Paths with Recurrent Buffering Units 2022 Divyam Anshumaan
Sriram Balasubramanian
Shubham Tiwari
Nagarajan Natarajan
Sundararajan Sellamanickam
Venkata N. Padmanabhan
+ PDF Chat Jigsaw: Large Language Models meet Program Synthesis 2021 Naman Jain
Skanda Vaidyanath
Arun Iyer
Nagarajan Natarajan
Suresh Parthasarathy
Sriram K. Rajamani
Rahul Sharma
+ Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization 2021 Aadirupa Saha
Nagarajan Natarajan
Praneeth Netrapalli
Prateek Jain
+ Learning Accurate Decision Trees with Bandit Feedback via Quantized Gradient Descent. 2021 Ajaykrishna Karthikeyan
Naman Jain
Nagarajan Natarajan
Prateek Jain
+ Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization 2021 Aadirupa Saha
Nagarajan Natarajan
Praneeth Netrapalli
Prateek Jain
+ Learning Accurate Decision Trees with Bandit Feedback via Quantized Gradient Descent 2021 Ajaykrishna Karthikeyan
Naman Jain
Nagarajan Natarajan
Prateek Jain
+ Jigsaw: Large Language Models meet Program Synthesis 2021 Naman Jain
Skanda Vaidyanath
Arun Iyer
Nagarajan Natarajan
Suresh Parthasarathy
Sriram K. Rajamani
Rahul Sharma
+ Programming by Rewards. 2020 Nagarajan Natarajan
Ajaykrishna Karthikeyan
Prateek Jain
Ivan Radiček
Sriram K. Rajamani
Sumit Gulwani
Johannes Gehrke
+ Programming by Rewards 2020 Nagarajan Natarajan
Ajaykrishna Karthikeyan
Prateek Jain
Ivan Radiček
Sriram K. Rajamani
Sumit Gulwani
Johannes Gehrke
+ OASIS: ILP-Guided Synthesis of Loop Invariants. 2019 Sahil Bhatia
Saswat Padhi
Nagarajan Natarajan
Rahul Sharma
Prateek Jain
+ On Scaling Data-Driven Loop Invariant Inference 2019 Sahil Bhatia
Saswat Padhi
Nagarajan Natarajan
Rahul Sharma
Prateek Jain
+ On Scaling Data-Driven Loop Invariant Inference 2019 Sahil Bhatia
Saswat Padhi
Nagarajan Natarajan
Rahul Sharma
Prateek Jain
+ Consistency Analysis for Binary Classification Revisited 2017 Krzysztof Dembczyński
Wojciech Kotłowski
Oluwasanmi Koyejo
Nagarajan Natarajan
+ Leveraging Distributional Semantics for Multi-Label Learning 2017 Rahul Wadbude
Vivek Gupta
Piyush Rai
Nagarajan Natarajan
Harish Karnick
Prateek Jain
+ Learning from Binary Labels with Instance-Dependent Corruption 2016 Aditya Krishna Menon
Brendan van Rooyen
Nagarajan Natarajan
+ Learning from Binary Labels with Instance-Dependent Corruption 2016 Aditya Krishna Menon
Brendan van Rooyen
Nagarajan Natarajan
+ Regret Bounds for Non-decomposable Metrics with Missing Labels 2016 Prateek Jain
Nagarajan Natarajan
+ Optimal Decision-Theoretic Classification Using Non-Decomposable Performance Metrics 2015 Nagarajan Natarajan
Oluwasanmi Koyejo
Pradeep Ravikumar
Inderjit S. Dhillon
+ PU Learning for Matrix Completion 2014 Cho‐Jui Hsieh
Nagarajan Natarajan
Inderjit S. Dhillon
+ PU Learning for Matrix Completion 2014 Cho‐Jui Hsieh
Nagarajan Natarajan
Inderjit S. Dhillon
+ Prediction and Clustering in Signed Networks: A Local to Global Perspective 2013 Kai-Yang Chiang
Cho‐Jui Hsieh
Nagarajan Natarajan
Ambuj Tewari
Inderjit S. Dhillon
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Online convex programming and generalized infinitesimal gradient ascent 2003 Martin Zinkevich
3
+ Provable Inductive Matrix Completion 2013 Prateek Jain
Inderjit S. Dhillon
2
+ PDF Chat The octagon abstract domain 2006 Antoine MinĂŠ
2
+ Surrogate regret bounds for bipartite ranking via strongly proper losses 2014 Shivani Agarwal
2
+ Efficient non-greedy optimization of decision trees 2015 Mohammad Norouzi
Maxwell D. Collins
Matthew Johnson
David J. Fleet
Pushmeet Kohli
2
+ A Contextual Bandit Bake-off 2018 Alberto Bietti
Alekh Agarwal
John Langford
2
+ PDF Chat Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming 2013 Saeed Ghadimi
Guanghui Lan
2
+ Making Contextual Decisions with Low Technical Debt 2016 Alekh Agarwal
Sarah Bird
Markus Cozowicz
Luong Hoang
John Langford
Stephen Lee
Jiaji Li
Dan Melamed
Gal Oshri
Oswaldo Ribas
2
+ Surrogate regret bounds for proper losses 2009 Mark D. Reid
Robert C. Williamson
2
+ PDF Chat Counterexample-guided approach to finding numerical invariants 2017 ThanhVu Nguyen
Timos Antonopoulos
Andrew Ruef
Michael Hicks
2
+ PDF Chat An Empirical Distribution Function for Sampling with Incomplete Information 1955 Miriam Ayer
H. D. Brunk
George M. Ewing
Willam T. Reid
Edward Silverman
1
+ Some estimates of norms of random matrices 2004 Rafał Latała
1
+ How to Compare Different Loss Functions and Their Risks 2007 Ingo Steinwart
1
+ A sequential algorithm for training text classifiers 1994 David Lewis
William A. Gale
1
+ Composite Binary Losses 2010 Mark D. Reid
Robert C. Williamson
1
+ PDF Chat Noise Tolerance Under Risk Minimization 2012 Naresh Manwani
P. S. Sastry
1
+ PDF Chat A Singular Value Thresholding Algorithm for Matrix Completion 2010 Jian‐Feng Cai
Emmanuel J. Candès
Zuowei Shen
1
+ PDF Chat The slashdot zoo: mining a social network with negative edges 2009 JĂŠrĂ´me Kunegis
Andreas Lommatzsch
Christian Bauckhage
1
+ Loss Functions for Binary Class Probability Estimation and Classification: Structure and Applications 2005 Andreas Buja
Werner Stuetzle
Yi Shen
1
+ Sequence to Sequence Learning with Neural Networks 2014 Ilya Sutskever
Oriol Vinyals
Quoc V. Le
1
+ PDF Chat The Power of Convex Relaxation: Near-Optimal Matrix Completion 2010 Emmanuel J. Candès
Terence Tao
1
+ Parallel matrix factorization for recommender systems 2013 Hsiang‐Fu Yu
Cho‐Jui Hsieh
Si Si
Inderjit S. Dhillon
1
+ Modularity and community structure in networks 2006 M. E. J. Newman
1
+ Sequence Level Training with Recurrent Neural Networks 2015 Marc’Aurelio Ranzato
Sumit Chopra
Michael Auli
Wojciech Zaremba
1
+ Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation 2013 Yoshua Bengio
Nicholas LĂŠonard
Aaron Courville
1
+ Loss factorization, weakly supervised learning and label noise robustness 2016 Giorgio Patrini
Frank Nielsen
Richard Nock
Marcello Carioni
1
+ PDF Chat XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 2016 Mohammad Rastegari
Vicente Ordóùez
Joseph Redmon
Ali Farhadi
1
+ An optimal algorithm for bandit convex optimization 2016 Elad Hazan
Yuanzhi Li
1
+ Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 2016 Matthieu Courbariaux
Itay Hubara
Daniel Soudry
Ran El‐Yaniv
Yoshua Bengio
1
+ A Multiworld Testing Decision Service. 2016 Alekh Agarwal
Sarah Bird
Markus Cozowicz
Luong Hoang
John Langford
Stephen Lee
Jiaji Li
Dan Melamed
Gal Oshri
Oswaldo Ribas
1
+ Online Controlled Experiments and A/B Testing 2016 Ron Kohavi
Roger Longbotham
1
+ Neural Decision Trees. 2017 Randall Balestriero
1
+ PDF Chat MoleculeNet: a benchmark for molecular machine learning 2017 Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
1
+ Conditional Time Series Forecasting with Convolutional Neural Networks 2017 Anastasia Borovykh
Sander M. BohtĂŠ
Cornelis W. Oosterlee
1
+ A Practical Method for Solving Contextual Bandit Problems Using Decision Trees 2017 Adam N. Elmachtoub
Ryan McNellis
Sechan Oh
Marek Petrik
1
+ Peeking at A/B Tests 2017 Ramesh Johari
Pete Koomen
Leonid Pekelis
David Walsh
1
+ FlashProfile: Interactive Synthesis of Syntactic Profiles. 2017 Saswat Padhi
Prateek Jain
Daniel Perelman
Oleksandr Polozov
Sumit Gulwani
Todd Millstein
1
+ Distilling a Neural Network Into a Soft Decision Tree 2017 Nicholas Frosst
Geoffrey E. Hinton
1
+ Projection-Free Bandit Convex Optimization 2018 Lin Chen
Mingrui Zhang
Amin Karbasi
1
+ Deep Neural Decision Trees 2018 Yongxin Yang
Irene Garcia Morillo
Timothy M. Hospedales
1
+ SmartChoices: Hybridizing Programming and Machine Learning 2019 Victor Cărbune
Thierry Coppey
Alexander N. Daryin
Thomas Deselaers
Nikhil Sarda
Jay Yagnik
1
+ PDF Chat Optimal Prescriptive Trees 2019 Dimitris Bertsimas
Jack Dunn
Nishanth Mundru
1
+ SyGuS-Comp 2018: Results and Analysis. 2019 Rajeev Alur
Dana Fisman
Saswat Padhi
Rishabh Singh
Abhishek Udupa
1
+ Time Series Simulation by Conditional Generative Adversarial Net 2020 Rao Fu
Jie Chen
Shutian Zeng
Yiping Zhuang
Agus Sudjianto
1
+ Overfitting in Synthesis: Theory and Practice (Extended Version) 2019 Saswat Padhi
Todd Millstein
Aditya V. Nori
Rahul Sharma
1
+ Towards Gradient Free and Projection Free Stochastic Optimization 2018 Anit Kumar Sahu
Manzil Zaheer
Soummya Kar
1
+ Deep Extreme Multi-label Learning 2017 Wenjie Zhang
Junchi Yan
Xiangfeng Wang
Hongyuan Zha
1
+ Consistent Multilabel Ranking through Univariate Losses 2012 Krzysztof Dembczyński
Wojciech Kotłowski
Eyke Huellermeier
1
+ Surrogate regret bounds for generalized classification performance metrics 2015 Wojciech Kotłowski
Krzysztof Dembczyński
1
+ Predicting Positive and Negative Links in Online Social Networks 2010 Jure Leskovec
Daniel P. Huttenlocher
Jon Kleinberg
1