+
PDF
Chat
|
HIGHT: Hierarchical Graph Tokenization for Graph-Language Alignment
|
2024
|
Yongqiang Chen
Quanming Yao
Juzheng Zhang
James Cheng
Yatao Bian
|
+
PDF
Chat
|
How Interpretable Are Interpretable Graph Neural Networks?
|
2024
|
Yongqiang Chen
Yatao Bian
Bo Han
James Cheng
|
+
PDF
Chat
|
Enhancing Evolving Domain Generalization through Dynamic Latent Representations
|
2024
|
Binghui Xie
Yongqiang Chen
Jiaqi Wang
Kaiwen Zhou
Bo Han
Meng Wei
James Cheng
|
+
PDF
Chat
|
Enhancing Neural Subset Selection: Integrating Background Information
into Set Representations
|
2024
|
Binghui Xie
Yatao Bian
Kaiwen Zhou
Yongqiang Chen
Peilin Zhao
Bo Han
Meng Wei
James Cheng
|
+
|
Enhancing Evolving Domain Generalization through Dynamic Latent Representations
|
2024
|
Binghui Xie
Yongqiang Chen
Jiaqi Wang
Kaiwen Zhou
Bo Han
Meng Wei
James Cheng
|
+
|
Understanding and Improving Feature Learning for Out-of-Distribution Generalization
|
2023
|
Yongqiang Chen
Wei Huang
Kaiwen Zhou
Yatao Bian
Bo Han
James Cheng
|
+
|
Towards out-of-distribution generalizable predictions of chemical kinetics properties
|
2023
|
Zihao Wang
Yongqiang Chen
Yang Duan
Weijiang Li
Bo Han
James Cheng
Hanghang Tong
|
+
|
Does Invariant Graph Learning via Environment Augmentation Learn Invariance?
|
2023
|
Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
|
+
|
Positional Information Matters for Invariant In-Context Learning: A Case Study of Simple Function Classes
|
2023
|
Yongqiang Chen
Binghui Xie
Kaiwen Zhou
Bo Han
Yatao Bian
James Cheng
|
+
|
SPT: Fine-Tuning Transformer-based Language Models Efficiently with Sparsification
|
2023
|
Yuntao Gui
Xiao Yan
Peiqi Yin
Han Yang
James Cheng
|
+
|
Measuring and Improving the Use of Graph Information in Graph Neural Networks
|
2022
|
Yifan Hou
Jian Zhang
James Cheng
Kaili Ma
T. B. Richard
Hongzhi Chen
Ming-Chang Yang
|
+
|
Understanding and Improving Graph Injection Attack by Promoting Unnoticeability
|
2022
|
Yongqiang Chen
Han Yang
Yonggang Zhang
Kaili Ma
Tongliang Liu
Bo Han
James Cheng
|
+
|
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
|
2022
|
Binghui Xie
Chenhan Jin
Kaiwen Zhou
James Cheng
Meng Wei
|
+
|
Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack
|
2022
|
Ruize Gao
Jiongxiao Wang
Kaiwen Zhou
Feng Liu
Binghui Xie
Gang Niu
Bo Han
James Cheng
|
+
|
Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization
|
2022
|
Yongqiang Chen
Kaiwen Zhou
Yatao Bian
Binghui Xie
Kaili Ma
Yonggang Zhang
Han Yang
Bo Han
James Cheng
|
+
|
Efficient Private SCO for Heavy-Tailed Data via Clipping
|
2022
|
Chenhan Jin
Kaiwen Zhou
Bo Han
James Cheng
MingâChang Yang
|
+
|
Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs
|
2022
|
Yongqiang Chen
Yonggang Zhang
Yatao Bian
Han Yang
Kaili Ma
Binghui Xie
Tongliang Liu
Bo Han
James Cheng
|
+
|
DGI: Easy and Efficient Inference for GNNs
|
2022
|
Peiqi Yin
Xiao Yan
Jinjing Zhou
Qiang Fu
Zhenkun Cai
James Cheng
Bo Tang
Minjie Wang
|
+
|
A Representation Learning Framework for Property Graphs
|
2022
|
Yifan Hou
Hongzhi Chen
Changji Li
James Cheng
MingâChang Yang
|
+
PDF
Chat
|
TensorOpt: Exploring the Tradeoffs in Distributed DNN Training With Auto-Parallelism
|
2021
|
Zhenkun Cai
Xiao Yan
Kaihao Ma
Yidi Wu
Yuzhen Huang
James Cheng
Teng Su
Fan Yu
|
+
PDF
Chat
|
Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs
|
2021
|
Han Yang
Yan Xiao
Xinyan Dai
Yongqiang Chen
James Cheng
|
+
PDF
Chat
|
Rethinking Graph Regularization for Graph Neural Networks
|
2021
|
Han Yang
Kaili Ma
James Cheng
|
+
|
Calibrating and Improving Graph Contrastive Learning
|
2021
|
Kaili Ma
Haochen Yang
Han Yang
Tatiana Jin
Pengfei Chen
Yongqiang Chen
Barakeel Fanseu Kamhoua
James Cheng
|
+
|
G-Tran: Making Distributed Graph Transactions Fast
|
2021
|
Hongzhi Chen
Changji Li
Chenguang Zheng
Chenghuan Huang
Dongfang Zhang
James Cheng
Jian Zhang
|
+
|
Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums
|
2021
|
Kaiwen Zhou
Lai Tian
Anthony ManâCho So
James Cheng
|
+
|
Local Reweighting for Adversarial Training
|
2021
|
Ruize Gao
Feng Liu
Kaiwen Zhou
Gang Niu
Bo Han
James Cheng
|
+
|
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
|
2021
|
Kaiwen Zhou
Anthony ManâCho So
James Cheng
|
+
PDF
Chat
|
Convolutional Embedding for Edit Distance
|
2020
|
Xinyan Dai
Xiao Yan
Kaiwen Zhou
Yuxuan Wang
Han Yang
James Cheng
|
+
PDF
Chat
|
Wasserstein Collaborative Filtering for Item Cold-start Recommendation
|
2020
|
Yitong Meng
Xiao Yan
Weiwen Liu
Huanhuan Wu
James Cheng
|
+
|
Tight Convergence Rate of Gradient Descent for Eigenvalue Computation
|
2020
|
Qinghua Ding
Kaiwen Zhou
James Cheng
|
+
PDF
Chat
|
Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner Product Search
|
2020
|
Xinyan Dai
Xiao Yan
Kelvin K. W. Ng
Jiu Liu
James Cheng
|
+
PDF
Chat
|
Understanding and Improving Proximity Graph Based Maximum Inner Product Search
|
2020
|
Jie Liu
Xiao Yan
Xinyan Dai
Zhirong Li
James Cheng
Ming-Chang Yang
|
+
|
Edit Distance Embedding using Convolutional Neural Networks.
|
2020
|
Xinyan Dai
Yan Xiao
Kaiwen Zhou
Yuxuan Wang
Han Yang
James Cheng
|
+
|
Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs
|
2020
|
Han Yang
Yan Xiao
Xinyan Dai
Yongqiang Chen
James Cheng
|
+
|
Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst-Case Rates
|
2020
|
Kaiwen Zhou
Anthony ManâCho So
James Cheng
|
+
|
Understanding Graph Neural Networks from Graph Signal Denoising Perspectives
|
2020
|
Guoji Fu
Yifan Hou
Jian Zhang
Kaili Ma
Barakeel Fanseu Kamhoua
James Cheng
|
+
|
Hierarchical Graph Matching Network for Graph Similarity Computation
|
2020
|
Haibo Xiu
Xiao Yan
Xiaoqiang Wang
James Cheng
Lei Cao
|
+
|
The item selection problem for user cold-start recommendation
|
2020
|
Yitong Meng
Jie Liu
Xiao Yan
James Cheng
|
+
|
Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst-Case Rates
|
2020
|
Kaiwen Zhou
Anthony ManâCho So
James Cheng
|
+
|
Rethinking Graph Regularization for Graph Neural Networks
|
2020
|
Yang Han
Kaili Ma
James Cheng
|
+
PDF
Chat
|
A Representation Learning Framework for Property Graphs
|
2019
|
Yifan Hou
Hongzhi Chen
Changji Li
James Cheng
Ming-Chang Yang
|
+
|
Direct Acceleration of SAGA using Sampled Negative Momentum
|
2019
|
Kaiwen Zhou
Qinghua Ding
Fanhua Shang
James Cheng
Danli Li
ZhiâQuan Luo
|
+
|
Pyramid: A General Framework for Distributed Similarity Search
|
2019
|
Shiyuan Deng
Xiao Yan
Kelvin K. W. Ng
Chenyu Jiang
James Cheng
|
+
|
Understanding and Improving Proximity Graph based Maximum Inner Product Search
|
2019
|
Jie Liu
Yan Xiao
Xinyan Dai
Zhirong Li
James Cheng
Ming-Chang Yang
|
+
|
Elastic deep learning in multi-tenant GPU cluster
|
2019
|
Yidi Wu
Kaihao Ma
Xiao Yan
Zhi Liu
Zhenkun Cai
Yuzhen Huang
James Cheng
Han Yuan
Fan Yu
|
+
|
Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner Product Search
|
2019
|
Xinyan Dai
Xiao Yan
Kelvin K. W. Ng
Jie Liu
James Cheng
|
+
|
Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning
|
2019
|
Xinyan Dai
Yan Xiao
Kaiwen Zhou
Han Yang
Kelvin K. W. Ng
James Cheng
Fan Yu
|
+
|
PMD: An Optimal Transportation-based User Distance for Recommender Systems
|
2019
|
Yitong Meng
Xinyan Dai
Xiao Yan
James Cheng
Weiwen Liu
Benben Liao
Jun Guo
Guangyong Chen
|
+
PDF
Chat
|
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning
|
2018
|
Fanhua Shang
Kaiwen Zhou
Hongying Liu
James Cheng
Ivor W. Tsang
Lijun Zhang
Dacheng Tao
Licheng Jiao
|
+
|
Norm-Range Partition: A Univiseral Catalyst for LSH based Maximum Inner Product Search (MIPS).
|
2018
|
Xiao Yan
Xinyan Dai
Jie Liu
Kaiwen Zhou
James Cheng
|
+
|
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
|
2018
|
Kaiwen Zhou
Fanhua Shang
James Cheng
|
+
PDF
Chat
|
Scalable De Novo Genome Assembly Using Pregel
|
2018
|
Da Yan
Hongzhi Chen
James Cheng
Zhenkun Cai
Bin Shao
|
+
|
Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization
|
2018
|
Fanhua Shang
Yuanyuan Liu
James Cheng
|
+
|
Scalable De Novo Genome Assembly Using Pregel
|
2018
|
Da Yan
Hongzhi Chen
James Cheng
Zhenkun Cai
Bin Shao
|
+
|
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning
|
2018
|
Fanhua Shang
Kaiwen Zhou
Hongying Liu
James Cheng
Ivor W. Tsang
Lijun Zhang
Dacheng Tao
Licheng Jiao
|
+
|
Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization
|
2018
|
Fanhua Shang
Yuanyuan Liu
Kaiwen Zhou
James Cheng
Kelvin K. W. Ng
Yuichi Yoshida
|
+
|
A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates
|
2018
|
Kaiwen Zhou
Fanhua Shang
James Cheng
|
+
|
Norm-Ranging LSH for Maximum Inner Product Search
|
2018
|
Xiao Yan
Jinfeng Li
Xinyan Dai
Hongzhi Chen
James Cheng
|
+
|
Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications
|
2018
|
Fanhua Shang
James Cheng
Yuanyuan Liu
ZhiâQuan Luo
Zhouchen Lin
|
+
|
ASVRG: Accelerated Proximal SVRG
|
2018
|
Fanhua Shang
Licheng Jiao
Kaiwen Zhou
James Cheng
Yan Ren
Yufei Jin
|
+
|
Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization
|
2018
|
Fanhua Shang
Yuanyuan Liu
James Cheng
|
+
|
Norm-Range Partition: A Universal Catalyst for LSH based Maximum Inner Product Search (MIPS)
|
2018
|
Yan Xiao
Xinyan Dai
Jie Liu
Kaiwen Zhou
James Cheng
|
+
|
Fuzzy Double Trace Norm Minimization for Recommendation Systems
|
2017
|
Fanhua Shang
Yuanyuan Liu
James Cheng
Da Yan
|
+
|
Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications
|
2017
|
Fanhua Shang
James Cheng
Yuanyuan Liu
ZhiâQuan Luo
Zhouchen Lin
|
+
|
Variance Reduced Stochastic Gradient Descent with Sufficient Decrease.
|
2017
|
Fanhua Shang
Yuanyuan Liu
James Cheng
Kelvin K. W. Ng
Yuichi Yoshida
|
+
|
LFTF
|
2017
|
Fan Yang
Fanhua Shang
Yuzhen Huang
James Cheng
Jinfeng Li
Yunjian Zhao
Ruihao Zhao
|
+
PDF
Chat
|
Accelerated Variance Reduced Stochastic ADMM
|
2017
|
Yuanyuan Liu
Fanhua Shang
James Cheng
|
+
|
Fast Stochastic Variance Reduced Gradient Method with Momentum Acceleration for Machine Learning
|
2017
|
Fanhua Shang
Yuanyuan Liu
James Cheng
Jiacheng Zhuo
|
+
|
Guaranteed Sufficient Decrease for Variance Reduced Stochastic Gradient Descent
|
2017
|
Fanhua Shang
Yuanyuan Liu
James Cheng
Kelvin K. W. Ng
Yuichi Yoshida
|
+
|
Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds
|
2017
|
Yuanyuan Liu
Fanhua Shang
James Cheng
Hong Cheng
Licheng Jiao
|
+
|
G-thinker: Big Graph Mining Made Easier and Faster
|
2017
|
Da Yan
Hongzhi Chen
James Cheng
M. TAMER ĂZSU
Qizhen Zhang
John C. S. Lui
|
+
|
Accelerated Variance Reduced Stochastic ADMM
|
2017
|
Yuanyuan Liu
Fanhua Shang
James Cheng
|
+
PDF
Chat
|
Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization
|
2016
|
Fanhua Shang
Yuanyuan Liu
James Cheng
|
+
|
Efficient Processing of Very Large Graphs in a Small Cluster
|
2016
|
Da Yan
Yuzhen Huang
James Cheng
Huanhuan Wu
|
+
|
Lightweight Fault Tolerance in Large-Scale Distributed Graph Processing
|
2016
|
Da Yan
James Cheng
Fan Yang
|
+
|
Efficient Processing of Reachability and Time-Based Path Queries in a Temporal Graph
|
2016
|
Huanhuan Wu
Yuzhen Huang
James Cheng
Jinfeng Li
Yiping Ke
|
+
|
Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization
|
2016
|
Fanhua Shang
Yuanyuan Liu
James Cheng
|
+
|
Unified Scalable Equivalent Formulations for Schatten Quasi-Norms
|
2016
|
Fanhua Shang
Yuanyuan Liu
James Cheng
|
+
|
Quegel: A General-Purpose Query-Centric Framework for Querying Big Graphs
|
2016
|
Da Yan
James Cheng
M. TAMER ĂZSU
Fan Yang
Yi Lu
John C. S. Lui
Qizhen Zhang
Wilfred Ng
|
+
|
Generalized Higher Order Orthogonal Iteration for Tensor Learning and Decomposition
|
2015
|
Yuanyuan Liu
Fanhua Shang
Wei Fan
James Cheng
Hong Cheng
|
+
PDF
Chat
|
Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation
|
2015
|
Da Yan
James Cheng
Yi Lu
Wilfred Ng
|
+
|
Regularized Orthogonal Tensor Decompositions for Multi-Relational Learning
|
2015
|
Fanhua Shang
Yuanyuan Liu
James Cheng
Hong Cheng
|
+
|
Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation
|
2015
|
Da Yan
James Cheng
Yi Lu
Wilfred Ng
|
+
|
Trace Norm Regularized CANDECOMP/PARAFAC Decomposition With Missing Data
|
2014
|
Yuanyuan Liu
Fanhua Shang
Licheng Jiao
James Cheng
Hong Cheng
|
+
|
Generalized Higher-Order Orthogonal Iteration for Tensor Decomposition and Completion
|
2014
|
Yuanyuan Liu
Fanhua Shang
Wei Fan
James Cheng
Hong Cheng
|
+
PDF
Chat
|
Generalized Higher-Order Tensor Decomposition via Parallel ADMM
|
2014
|
Fanhua Shang
Yuanyuan Liu
James Cheng
|
+
PDF
Chat
|
Tripartite graph clustering for dynamic sentiment analysis on social media
|
2014
|
Linhong Zhu
Aram Galstyan
James Cheng
Kristina Lerman
|
+
PDF
Chat
|
Factor Matrix Trace Norm Minimization for Low-Rank Tensor Completion
|
2014
|
Yuanyuan Liu
Fanhua Shang
Hong Cheng
James Cheng
Hanghang Tong
|
+
|
Generalized Higher-Order Tensor Decomposition via Parallel ADMM
|
2014
|
Fanhua Shang
Yuanyuan Liu
James Cheng
|
+
|
Structured Low-Rank Matrix Factorization with Missing and Grossly Corrupted Observations
|
2014
|
Fanhua Shang
Yuanyuan Liu
Hanghang Tong
James Cheng
Hong Cheng
|
+
|
Temporal Graph Traversals: Definitions, Algorithms, and Applications
|
2014
|
Silu Huang
James Cheng
Huanhuan Wu
|
+
|
IS-LABEL: an Independent-Set based Labeling Scheme for Point-to-Point Distance Querying on Large Graphs
|
2012
|
Ada Wai-Chee Fu
Huanhuan Wu
James Cheng
Shumo Chu
Raymond Chi-Wing Wong
|
+
PDF
Chat
|
Truss decomposition in massive networks
|
2012
|
Jia Wang
James Cheng
|
+
|
Truss Decomposition in Massive Networks
|
2012
|
Jia Wang
James Cheng
|
+
|
K-Reach: Who is in Your Small World
|
2012
|
James Cheng
Zechao Shang
Hong Cheng
Haixun Wang
Jeffrey Xu Yu
|
+
|
IS-LABEL: an Independent-Set based Labeling Scheme for Point-to-Point Distance Querying on Large Graphs
|
2012
|
Ada Wai-Chee Fu
Huanhuan Wu
James Cheng
Shumo Chu
Raymond Chi-Wing Wong
|