James Cheng

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat HIGHT: Hierarchical Graph Tokenization for Graph-Language Alignment 2024 Yongqiang Chen
Quanming Yao
Juzheng Zhang
James Cheng
Yatao Bian
+ PDF Chat How Interpretable Are Interpretable Graph Neural Networks? 2024 Yongqiang Chen
Yatao Bian
Bo Han
James Cheng
+ PDF Chat Enhancing Evolving Domain Generalization through Dynamic Latent Representations 2024 Binghui Xie
Yongqiang Chen
Jiaqi Wang
Kaiwen Zhou
Bo Han
Meng Wei
James Cheng
+ PDF Chat Enhancing Neural Subset Selection: Integrating Background Information into Set Representations 2024 Binghui Xie
Yatao Bian
Kaiwen Zhou
Yongqiang Chen
Peilin Zhao
Bo Han
Meng Wei
James Cheng
+ Enhancing Evolving Domain Generalization through Dynamic Latent Representations 2024 Binghui Xie
Yongqiang Chen
Jiaqi Wang
Kaiwen Zhou
Bo Han
Meng Wei
James Cheng
+ Understanding and Improving Feature Learning for Out-of-Distribution Generalization 2023 Yongqiang Chen
Wei Huang
Kaiwen Zhou
Yatao Bian
Bo Han
James Cheng
+ Towards out-of-distribution generalizable predictions of chemical kinetics properties 2023 Zihao Wang
Yongqiang Chen
Yang Duan
Weijiang Li
Bo Han
James Cheng
Hanghang Tong
+ Does Invariant Graph Learning via Environment Augmentation Learn Invariance? 2023 Yongqiang Chen
Yatao Bian
Kaiwen Zhou
Binghui Xie
Bo Han
James Cheng
+ Positional Information Matters for Invariant In-Context Learning: A Case Study of Simple Function Classes 2023 Yongqiang Chen
Binghui Xie
Kaiwen Zhou
Bo Han
Yatao Bian
James Cheng
+ SPT: Fine-Tuning Transformer-based Language Models Efficiently with Sparsification 2023 Yuntao Gui
Xiao Yan
Peiqi Yin
Han Yang
James Cheng
+ Measuring and Improving the Use of Graph Information in Graph Neural Networks 2022 Yifan Hou
Jian Zhang
James Cheng
Kaili Ma
T. B. Richard
Hongzhi Chen
Ming-Chang Yang
+ Understanding and Improving Graph Injection Attack by Promoting Unnoticeability 2022 Yongqiang Chen
Han Yang
Yonggang Zhang
Kaili Ma
Tongliang Liu
Bo Han
James Cheng
+ An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms 2022 Binghui Xie
Chenhan Jin
Kaiwen Zhou
James Cheng
Meng Wei
+ Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack 2022 Ruize Gao
Jiongxiao Wang
Kaiwen Zhou
Feng Liu
Binghui Xie
Gang Niu
Bo Han
James Cheng
+ Pareto Invariant Risk Minimization: Towards Mitigating the Optimization Dilemma in Out-of-Distribution Generalization 2022 Yongqiang Chen
Kaiwen Zhou
Yatao Bian
Binghui Xie
Kaili Ma
Yonggang Zhang
Han Yang
Bo Han
James Cheng
+ Efficient Private SCO for Heavy-Tailed Data via Clipping 2022 Chenhan Jin
Kaiwen Zhou
Bo Han
James Cheng
Ming‐Chang Yang
+ Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs 2022 Yongqiang Chen
Yonggang Zhang
Yatao Bian
Han Yang
Kaili Ma
Binghui Xie
Tongliang Liu
Bo Han
James Cheng
+ DGI: Easy and Efficient Inference for GNNs 2022 Peiqi Yin
Xiao Yan
Jinjing Zhou
Qiang Fu
Zhenkun Cai
James Cheng
Bo Tang
Minjie Wang
+ A Representation Learning Framework for Property Graphs 2022 Yifan Hou
Hongzhi Chen
Changji Li
James Cheng
Ming‐Chang Yang
+ PDF Chat TensorOpt: Exploring the Tradeoffs in Distributed DNN Training With Auto-Parallelism 2021 Zhenkun Cai
Xiao Yan
Kaihao Ma
Yidi Wu
Yuzhen Huang
James Cheng
Teng Su
Fan Yu
+ PDF Chat Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs 2021 Han Yang
Yan Xiao
Xinyan Dai
Yongqiang Chen
James Cheng
+ PDF Chat Rethinking Graph Regularization for Graph Neural Networks 2021 Han Yang
Kaili Ma
James Cheng
+ Calibrating and Improving Graph Contrastive Learning 2021 Kaili Ma
Haochen Yang
Han Yang
Tatiana Jin
Pengfei Chen
Yongqiang Chen
Barakeel Fanseu Kamhoua
James Cheng
+ G-Tran: Making Distributed Graph Transactions Fast 2021 Hongzhi Chen
Changji Li
Chenguang Zheng
Chenghuan Huang
Dongfang Zhang
James Cheng
Jian Zhang
+ Practical Schemes for Finding Near-Stationary Points of Convex Finite-Sums 2021 Kaiwen Zhou
Lai Tian
Anthony Man–Cho So
James Cheng
+ Local Reweighting for Adversarial Training 2021 Ruize Gao
Feng Liu
Kaiwen Zhou
Gang Niu
Bo Han
James Cheng
+ Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization 2021 Kaiwen Zhou
Anthony Man–Cho So
James Cheng
+ PDF Chat Convolutional Embedding for Edit Distance 2020 Xinyan Dai
Xiao Yan
Kaiwen Zhou
Yuxuan Wang
Han Yang
James Cheng
+ PDF Chat Wasserstein Collaborative Filtering for Item Cold-start Recommendation 2020 Yitong Meng
Xiao Yan
Weiwen Liu
Huanhuan Wu
James Cheng
+ Tight Convergence Rate of Gradient Descent for Eigenvalue Computation 2020 Qinghua Ding
Kaiwen Zhou
James Cheng
+ PDF Chat Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner Product Search 2020 Xinyan Dai
Xiao Yan
Kelvin K. W. Ng
Jiu Liu
James Cheng
+ PDF Chat Understanding and Improving Proximity Graph Based Maximum Inner Product Search 2020 Jie Liu
Xiao Yan
Xinyan Dai
Zhirong Li
James Cheng
Ming-Chang Yang
+ Edit Distance Embedding using Convolutional Neural Networks. 2020 Xinyan Dai
Yan Xiao
Kaiwen Zhou
Yuxuan Wang
Han Yang
James Cheng
+ Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs 2020 Han Yang
Yan Xiao
Xinyan Dai
Yongqiang Chen
James Cheng
+ Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst-Case Rates 2020 Kaiwen Zhou
Anthony Man–Cho So
James Cheng
+ Understanding Graph Neural Networks from Graph Signal Denoising Perspectives 2020 Guoji Fu
Yifan Hou
Jian Zhang
Kaili Ma
Barakeel Fanseu Kamhoua
James Cheng
+ Hierarchical Graph Matching Network for Graph Similarity Computation 2020 Haibo Xiu
Xiao Yan
Xiaoqiang Wang
James Cheng
Lei Cao
+ The item selection problem for user cold-start recommendation 2020 Yitong Meng
Jie Liu
Xiao Yan
James Cheng
+ Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst-Case Rates 2020 Kaiwen Zhou
Anthony Man–Cho So
James Cheng
+ Rethinking Graph Regularization for Graph Neural Networks 2020 Yang Han
Kaili Ma
James Cheng
+ PDF Chat A Representation Learning Framework for Property Graphs 2019 Yifan Hou
Hongzhi Chen
Changji Li
James Cheng
Ming-Chang Yang
+ Direct Acceleration of SAGA using Sampled Negative Momentum 2019 Kaiwen Zhou
Qinghua Ding
Fanhua Shang
James Cheng
Danli Li
Zhi‐Quan Luo
+ Pyramid: A General Framework for Distributed Similarity Search 2019 Shiyuan Deng
Xiao Yan
Kelvin K. W. Ng
Chenyu Jiang
James Cheng
+ Understanding and Improving Proximity Graph based Maximum Inner Product Search 2019 Jie Liu
Yan Xiao
Xinyan Dai
Zhirong Li
James Cheng
Ming-Chang Yang
+ Elastic deep learning in multi-tenant GPU cluster 2019 Yidi Wu
Kaihao Ma
Xiao Yan
Zhi Liu
Zhenkun Cai
Yuzhen Huang
James Cheng
Han Yuan
Fan Yu
+ Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner Product Search 2019 Xinyan Dai
Xiao Yan
Kelvin K. W. Ng
Jie Liu
James Cheng
+ Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning 2019 Xinyan Dai
Yan Xiao
Kaiwen Zhou
Han Yang
Kelvin K. W. Ng
James Cheng
Fan Yu
+ PMD: An Optimal Transportation-based User Distance for Recommender Systems 2019 Yitong Meng
Xinyan Dai
Xiao Yan
James Cheng
Weiwen Liu
Benben Liao
Jun Guo
Guangyong Chen
+ PDF Chat VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning 2018 Fanhua Shang
Kaiwen Zhou
Hongying Liu
James Cheng
Ivor W. Tsang
Lijun Zhang
Dacheng Tao
Licheng Jiao
+ Norm-Range Partition: A Univiseral Catalyst for LSH based Maximum Inner Product Search (MIPS). 2018 Xiao Yan
Xinyan Dai
Jie Liu
Kaiwen Zhou
James Cheng
+ A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates 2018 Kaiwen Zhou
Fanhua Shang
James Cheng
+ PDF Chat Scalable De Novo Genome Assembly Using Pregel 2018 Da Yan
Hongzhi Chen
James Cheng
Zhenkun Cai
Bin Shao
+ Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization 2018 Fanhua Shang
Yuanyuan Liu
James Cheng
+ Scalable De Novo Genome Assembly Using Pregel 2018 Da Yan
Hongzhi Chen
James Cheng
Zhenkun Cai
Bin Shao
+ VR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning 2018 Fanhua Shang
Kaiwen Zhou
Hongying Liu
James Cheng
Ivor W. Tsang
Lijun Zhang
Dacheng Tao
Licheng Jiao
+ Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient Optimization 2018 Fanhua Shang
Yuanyuan Liu
Kaiwen Zhou
James Cheng
Kelvin K. W. Ng
Yuichi Yoshida
+ A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates 2018 Kaiwen Zhou
Fanhua Shang
James Cheng
+ Norm-Ranging LSH for Maximum Inner Product Search 2018 Xiao Yan
Jinfeng Li
Xinyan Dai
Hongzhi Chen
James Cheng
+ Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications 2018 Fanhua Shang
James Cheng
Yuanyuan Liu
Zhi‐Quan Luo
Zhouchen Lin
+ ASVRG: Accelerated Proximal SVRG 2018 Fanhua Shang
Licheng Jiao
Kaiwen Zhou
James Cheng
Yan Ren
Yufei Jin
+ Tractable and Scalable Schatten Quasi-Norm Approximations for Rank Minimization 2018 Fanhua Shang
Yuanyuan Liu
James Cheng
+ Norm-Range Partition: A Universal Catalyst for LSH based Maximum Inner Product Search (MIPS) 2018 Yan Xiao
Xinyan Dai
Jie Liu
Kaiwen Zhou
James Cheng
+ Fuzzy Double Trace Norm Minimization for Recommendation Systems 2017 Fanhua Shang
Yuanyuan Liu
James Cheng
Da Yan
+ Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications 2017 Fanhua Shang
James Cheng
Yuanyuan Liu
Zhi‐Quan Luo
Zhouchen Lin
+ Variance Reduced Stochastic Gradient Descent with Sufficient Decrease. 2017 Fanhua Shang
Yuanyuan Liu
James Cheng
Kelvin K. W. Ng
Yuichi Yoshida
+ LFTF 2017 Fan Yang
Fanhua Shang
Yuzhen Huang
James Cheng
Jinfeng Li
Yunjian Zhao
Ruihao Zhao
+ PDF Chat Accelerated Variance Reduced Stochastic ADMM 2017 Yuanyuan Liu
Fanhua Shang
James Cheng
+ Fast Stochastic Variance Reduced Gradient Method with Momentum Acceleration for Machine Learning 2017 Fanhua Shang
Yuanyuan Liu
James Cheng
Jiacheng Zhuo
+ Guaranteed Sufficient Decrease for Variance Reduced Stochastic Gradient Descent 2017 Fanhua Shang
Yuanyuan Liu
James Cheng
Kelvin K. W. Ng
Yuichi Yoshida
+ Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds 2017 Yuanyuan Liu
Fanhua Shang
James Cheng
Hong Cheng
Licheng Jiao
+ G-thinker: Big Graph Mining Made Easier and Faster 2017 Da Yan
Hongzhi Chen
James Cheng
M. TAMER ÖZSU
Qizhen Zhang
John C. S. Lui
+ Accelerated Variance Reduced Stochastic ADMM 2017 Yuanyuan Liu
Fanhua Shang
James Cheng
+ PDF Chat Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization 2016 Fanhua Shang
Yuanyuan Liu
James Cheng
+ Efficient Processing of Very Large Graphs in a Small Cluster 2016 Da Yan
Yuzhen Huang
James Cheng
Huanhuan Wu
+ Lightweight Fault Tolerance in Large-Scale Distributed Graph Processing 2016 Da Yan
James Cheng
Fan Yang
+ Efficient Processing of Reachability and Time-Based Path Queries in a Temporal Graph 2016 Huanhuan Wu
Yuzhen Huang
James Cheng
Jinfeng Li
Yiping Ke
+ Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization 2016 Fanhua Shang
Yuanyuan Liu
James Cheng
+ Unified Scalable Equivalent Formulations for Schatten Quasi-Norms 2016 Fanhua Shang
Yuanyuan Liu
James Cheng
+ Quegel: A General-Purpose Query-Centric Framework for Querying Big Graphs 2016 Da Yan
James Cheng
M. TAMER ÖZSU
Fan Yang
Yi Lu
John C. S. Lui
Qizhen Zhang
Wilfred Ng
+ Generalized Higher Order Orthogonal Iteration for Tensor Learning and Decomposition 2015 Yuanyuan Liu
Fanhua Shang
Wei Fan
James Cheng
Hong Cheng
+ PDF Chat Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation 2015 Da Yan
James Cheng
Yi Lu
Wilfred Ng
+ Regularized Orthogonal Tensor Decompositions for Multi-Relational Learning 2015 Fanhua Shang
Yuanyuan Liu
James Cheng
Hong Cheng
+ Effective Techniques for Message Reduction and Load Balancing in Distributed Graph Computation 2015 Da Yan
James Cheng
Yi Lu
Wilfred Ng
+ Trace Norm Regularized CANDECOMP/PARAFAC Decomposition With Missing Data 2014 Yuanyuan Liu
Fanhua Shang
Licheng Jiao
James Cheng
Hong Cheng
+ Generalized Higher-Order Orthogonal Iteration for Tensor Decomposition and Completion 2014 Yuanyuan Liu
Fanhua Shang
Wei Fan
James Cheng
Hong Cheng
+ PDF Chat Generalized Higher-Order Tensor Decomposition via Parallel ADMM 2014 Fanhua Shang
Yuanyuan Liu
James Cheng
+ PDF Chat Tripartite graph clustering for dynamic sentiment analysis on social media 2014 Linhong Zhu
Aram Galstyan
James Cheng
Kristina Lerman
+ PDF Chat Factor Matrix Trace Norm Minimization for Low-Rank Tensor Completion 2014 Yuanyuan Liu
Fanhua Shang
Hong Cheng
James Cheng
Hanghang Tong
+ Generalized Higher-Order Tensor Decomposition via Parallel ADMM 2014 Fanhua Shang
Yuanyuan Liu
James Cheng
+ Structured Low-Rank Matrix Factorization with Missing and Grossly Corrupted Observations 2014 Fanhua Shang
Yuanyuan Liu
Hanghang Tong
James Cheng
Hong Cheng
+ Temporal Graph Traversals: Definitions, Algorithms, and Applications 2014 Silu Huang
James Cheng
Huanhuan Wu
+ IS-LABEL: an Independent-Set based Labeling Scheme for Point-to-Point Distance Querying on Large Graphs 2012 Ada Wai-Chee Fu
Huanhuan Wu
James Cheng
Shumo Chu
Raymond Chi-Wing Wong
+ PDF Chat Truss decomposition in massive networks 2012 Jia Wang
James Cheng
+ Truss Decomposition in Massive Networks 2012 Jia Wang
James Cheng
+ K-Reach: Who is in Your Small World 2012 James Cheng
Zechao Shang
Hong Cheng
Haixun Wang
Jeffrey Xu Yu
+ IS-LABEL: an Independent-Set based Labeling Scheme for Point-to-Point Distance Querying on Large Graphs 2012 Ada Wai-Chee Fu
Huanhuan Wu
James Cheng
Shumo Chu
Raymond Chi-Wing Wong
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat A Singular Value Thresholding Algorithm for Matrix Completion 2010 Jian‐Feng Cai
Emmanuel J. Candès
Zuowei Shen
13
+ PDF Chat Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization 2010 Benjamin Recht
Maryam Fazel
Pablo A. Parrilo
9
+ Tensor Decompositions and Applications 2009 Tamara G. Kolda
Brett W. Bader
8
+ Introductory Lectures on Convex Optimization: A Basic Course 2014 Ю Е Нестеров
8
+ A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets 2012 Nicolas Le Roux
Mark Schmidt
Francis Bach
8
+ PDF Chat A Multilinear Singular Value Decomposition 2000 Lieven De Lathauwer
Bart De Moor
Joos Vandewalle
7
+ Scalable Tensor Factorizations with Missing Data 2010 Evrim Acar
Daniel Dunlavy
Tamara G. Kolda
Morten Mørup
7
+ A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems 2009 Amir Beck
Marc Teboulle
7
+ Proximal alternating linearized minimization for nonconvex and nonsmooth problems 2013 JĂŠrĂ´me Bolte
Shoham Sabach
Marc Teboulle
6
+ SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives 2014 Aaron Defazio
Francis Bach
Simon Lacoste-Julien
6
+ Spectral Regularization Algorithms for Learning Large Incomplete Matrices. 2010 Rahul Mazumder
Trevor Hastie
Robert Tibshirani
6
+ PDF Chat A Proximal Stochastic Gradient Method with Progressive Variance Reduction 2014 Lin Xiao
Tong Zhang
6
+ Accelerated Stochastic Mirror Descent Algorithms For Composite Non-strongly Convex Optimization 2016 Le Thi Khanh Hien
Cuong V. Nguyen
Huan Xu
Canyi Lu
Jiashi Feng
6
+ Graph Attention Networks 2018 Petar Veličković
Guillem Cucurull
Arantxa Casanova
Adriana Romero
PĂ­etro LiĂł
Yoshua Bengio
6
+ PDF Chat Maximum inner-product search using cone trees 2012 Parikshit Ram
Alexander Gray
6
+ PDF Chat Robust principal component analysis? 2011 Emmanuel J. Candès
Xiaodong Li
Yi Ma
John Wright
6
+ PDF Chat Learning with tensors: a framework based on convex optimization and spectral regularization 2013 Marco Signoretto
Quoc Tran Dinh
Lieven De Lathauwer
Johan A. K. Suykens
6
+ PDF Chat A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography 2012 Oleg Kuybeda
Gabriel A. Frank
Alberto Bartesaghi
Mario J. Borgnia
Sriram Subramaniam
Guillermo Sapiro
6
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
6
+ Fast Graph Representation Learning with PyTorch Geometric 2019 Matthias Fey
Jan Eric Lenssen
5
+ Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis 1970 Richard A. Harshman
5
+ PDF Chat Robust Low-Rank Tensor Recovery: Models and Algorithms 2014 Donald Goldfarb
Zhiwei Qin
5
+ PDF Chat Matrix completion from a few entries 2009 Raghunandan H. Keshavan
Sewoong Oh
Andrea Montanari
5
+ PDF Chat Most Tensor Problems Are NP-Hard 2013 Christopher J. Hillar
Lek‐Heng Lim
5
+ PDF Chat Factor Matrix Trace Norm Minimization for Low-Rank Tensor Completion 2014 Yuanyuan Liu
Fanhua Shang
Hong Cheng
James Cheng
Hanghang Tong
5
+ PDF Chat Tensor factorization using auxiliary information 2012 Atsuhiro Narita
Kohei Hayashi
Ryota Tomioka
Hisashi Kashima
5
+ Generalized Higher-Order Orthogonal Iteration for Tensor Decomposition and Completion 2014 Yuanyuan Liu
Fanhua Shang
Wei Fan
James Cheng
Hong Cheng
5
+ Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties 2001 Jianqing Fan
Runze Li
5
+ Convex Tensor Decomposition via Structured Schatten Norm Regularization 2013 Ryota Tomioka
Taiji Suzuki
5
+ How Powerful are Graph Neural Networks? 2018 Keyulu Xu
Weihua Hu
Jure Leskovec
Stefanie Jegelka
5
+ Simplifying Graph Convolutional Networks 2019 Felix Wu
Tianyi Zhang
Amauri H. Souza
Christopher Fifty
Tao Yu
Kilian Q. Weinberger
4
+ PDF Chat Image-Based Recommendations on Styles and Substitutes 2015 Julian McAuley
Christopher Targett
Qinfeng Shi
Anton van den Hengel
4
+ Pitfalls of Graph Neural Network Evaluation 2018 Oleksandr Shchur
Maximilian Mumme
Aleksandar Bojchevski
Stephan GĂźnnemann
4
+ Revisiting Graph Neural Networks: All We Have is Low-Pass Filters 2019 Hoang Nt
Takanori Maehara
4
+ Generalized Higher-Order Tensor Decomposition via Parallel ADMM 2014 Fanhua Shang
Yuanyuan Liu
James Cheng
4
+ On the Best Rank-1 and Rank-(<i>R</i><sub>1</sub> ,<i>R</i><sub>2</sub> ,. . .,<i>R<sub>N</sub></i>) Approximation of Higher-Order Tensors 2000 Lieven De Lathauwer
Bart De Moor
Joos Vandewalle
4
+ PDF Chat Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization 2014 Shai Shalev‐Shwartz
Tong Zhang
4
+ Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra 2004 Lieven De Lathauwer
Joos Vandewalle
4
+ Inductive Representation Learning on Large Graphs 2017 William L. Hamilton
Rex Ying
Jure Leskovec
4
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
4
+ PDF Chat Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting 2015 Jakub Konečný
Jie Liu
Peter RichtĂĄrik
Martin Takáč
4
+ Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS) 2014 Anshumali Shrivastava
Ping Li
4
+ Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation 2011 Zhouchen Lin
Risheng Liu
Zhixun Su
4
+ PDF Chat Smooth minimization of non-smooth functions 2004 Yu. Nesterov
4
+ Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization 2016 Fanhua Shang
Yuanyuan Liu
James Cheng
4
+ Statistical Performance of Convex Tensor Decomposition 2011 Ryota Tomioka
Taiji Suzuki
Kohei Hayashi
Hisashi Kashima
4
+ Applications of tensor (multiway array) factorizations and decompositions in data mining 2011 Morten Mørup
4
+ Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery 2014 Cun Mu
Bo Huang
John Wright
Donald Goldfarb
4
+ PDF Chat Nearly unbiased variable selection under minimax concave penalty 2010 Cun‐Hui Zhang
4
+ PDF Chat A rank minimization heuristic with application to minimum order system approximation 2001 Maryam Fazel
H. Hindi
Stephen Boyd
4