Loucas Pillaud-Vivien

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Stochastic Differential Equations models for Least-Squares Stochastic Gradient Descent 2024 Adrien Schertzer
Loucas Pillaud-Vivien
+ PDF Chat An Ordering of Divergences for Variational Inference with Factorized Gaussian Approximations 2024 Charles C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
+ PDF Chat The Computational Complexity of Learning Gaussian Single-Index Models 2024 Alex Damian
Loucas Pillaud-Vivien
Jason D. Lee
Joan Bruna
+ PDF Chat Batch and match: black-box variational inference with a score-based divergence 2024 Diana Cai
Chirag Modi
Loucas Pillaud-Vivien
Charles C. Margossian
Robert M. Gower
David M. Blei
Lawrence K. Saul
+ Kernelized Diffusion maps 2023 Loucas Pillaud-Vivien
Francis Bach
+ On Single Index Models beyond Gaussian Data 2023 Joan Bruna
Loucas Pillaud-Vivien
Aaron Zweig
+ On Learning Gaussian Multi-index Models with Gradient Flow 2023 Alberto Bietti
Joan Bruna
Loucas Pillaud-Vivien
+ PDF Chat Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs 2022 Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
+ PDF Chat Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation 2022 Loucas Pillaud-Vivien
Julien Reygner
Nicolas Flammarion
+ Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs 2022 Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
+ SGD with Large Step Sizes Learns Sparse Features 2022 Maksym Andriushchenko
Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
+ Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation 2022 Loucas Pillaud-Vivien
Julien Reygner
Nicolas Flammarion
+ PDF Chat Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning 2021 Vivien Cabannes
Loucas Pillaud-Vivien
Francis Bach
Alessandro Rudi
+ Last iterate convergence of SGD for Least-Squares in the Interpolation regime 2021 Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
+ Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity 2021 Scott Pesme
Loucas Pillaud-Vivien
Nicolas Flammarion
+ Last iterate convergence of SGD for Least-Squares in the Interpolation regime 2021 Aditya Varre
Loucas Pillaud-Vivien
Nicolas Flammarion
+ Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity 2021 Scott Pesme
Loucas Pillaud-Vivien
Nicolas Flammarion
+ PDF Chat Learning with reproducing kernel Hilbert spaces : stochastic gradient descent and laplacian estimation 2020 Loucas Pillaud-Vivien
+ Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning 2020 Vivien Cabannes
Loucas Pillaud-Vivien
Francis Bach
Alessandro Rudi
+ Statistical Estimation of the Poincar{é} constant and Application to Sampling Multimodal Distributions 2019 Loucas Pillaud-Vivien
Francis Bach
Tony Lelièvre
Alessandro Rudi
Gabriel Stoltz
+ PDF Chat Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes 2018 Loucas Pillaud-Vivien
Alessandro Rudi
Francis Bach
+ Central Limit Theorem for stationary Fleming-Viot particle systems in finite spaces 2018 Tony Lelièvre
Loucas Pillaud-Vivien
Julien Reygner
+ Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes 2018 Loucas Pillaud-Vivien
Alessandro Rudi
Francis Bach
+ Exponential convergence of testing error for stochastic gradient methods 2017 Loucas Pillaud-Vivien
Alessandro Rudi
Francis Bach
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Optimal rates for spectral algorithms with least-squares regression over Hilbert spaces 2018 Junhong Lin
Alessandro Rudi
Lorenzo Rosasco
Volkan Cevher
2
+ A Consistent Regularization Approach for Structured Prediction 2016 Carlo Ciliberto
Alessandro Rudi
Lorenzo Rosasco
2
+ PDF Chat On some extensions of Bernstein’s inequality for self-adjoint operators 2017 Stanislav Minsker
2
+ PDF Chat Optimal Rates for the Regularized Least-Squares Algorithm 2006 Andrea Caponnetto
Ernesto De Vito
2
+ On Structured Prediction Theory with Calibrated Convex Surrogate Losses 2017 Anton Osokin
Francis Bach
Simon Lacoste-Julien
2
+ FALKON: An Optimal Large Scale Kernel Method 2017 Alessandro Rudi
Luigi Carratino
Lorenzo Rosasco
2
+ SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives 2014 Aaron Defazio
Francis Bach
Simon Lacoste-Julien
2
+ Generalization Properties of Learning with Random Features 2017 Alessandro Rudi
Lorenzo Rosasco
2
+ A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets 2012 Nicolas Le Roux
Mark Schmidt
Francis Bach
2
+ Fast Convergence of Stochastic Gradient Descent under a Strong Growth Condition 2013 Mark Schmidt
Nicolas Le Roux
2
+ On Early Stopping in Gradient Descent Learning 2007 Yuan Yao
Lorenzo Rosasco
Andrea Caponnetto
2
+ On the Control of an Interacting Particle Estimation of Schrödinger Ground States 2006 Mathias Rousset
1
+ An idea on proving weighted Sobolev embeddings 2010 Klaus Gansberger
1
+ PDF Chat Tagged Particle Limit for a Fleming-Viot Type System 2006 Ilie Grigorescu
Min Ho Kang
1
+ Derivative reproducing properties for kernel methods in learning theory 2007 Ding‐Xuan Zhou
1
+ Robust Stochastic Approximation Approach to Stochastic Programming 2009 Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
1
+ Topics in propagation of chaos 1991 Alain‐Sol Sznitman
1
+ Quantitative results for the Fleming–Viot particle system and quasi-stationary distributions in discrete space 2015 Bertrand Cloez
Marie-Noémie Thai
1
+ Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n) 2013 Francis Bach
Éric Moulines
1
+ A general two-scale criteria for logarithmic Sobolev inequalities 2008 Tony Lelièvre
1
+ Hydrodynamic limit for a Fleming–Viot type system 2003 Ilie Grigorescu
Min Ho Kang
1
+ On an Infinite-Dimensional Version of S. N. Bernstein’s Inequalities 1970 V. V. Yurinskii
1
+ A stationary Fleming–Viot type Brownian particle system 2008 Jörg‐Uwe Löbus
1
+ PDF Chat The Geometry of Algorithms with Orthogonality Constraints 1998 Alan Edelman
T. A. Arias
Steven T. Smith
1
+ Smooth discrimination analysis 1999 Enno Mammen
Alexandre B. Tsybakov
1
+ PDF Chat Isoperimetric problems for convex bodies and a localization lemma 1995 Ravi Kannan
László Lovász
Miklós Simonovits
1
+ PDF Chat Quasistationary Distributions and Fleming-Viot Processes in Finite Spaces 2011 Amine Asselah
Pablo A. Ferrari
Pablo Groisman
1
+ A new criterion for the logarithmic Sobolev inequality and two applications 2006 Félix Otto
Maria G. Reznikoff
1
+ On the exponential value of labeled samples 1995 Vittorio Castelli
Thomas M. Cover
1
+ Online Learning as Stochastic Approximation of Regularization Paths: Optimality and Almost-Sure Convergence 2014 Pierre Tarrès
Yuan Yao
1
+ PDF Chat A Note on an Inequality Involving the Normal Distribution 1981 Herman Chernoff
1
+ PDF Chat Sur quelques algorithmes récursifs pour les probabilités numériques 2001 Gilles Pagès
1
+ PDF Chat Accelerated dynamics: Mathematical foundations and algorithmic improvements 2015 Tony Lelièvre
1
+ Graph Laplacians and their Convergence on Random Neighborhood Graphs 2007 Matthias Hein
Jean-Yves Audibert
Ulrike von Luxburg
1
+ Optimum Bounds for the Distributions of Martingales in Banach Spaces 1994 Iosif Pinelis
1
+ PDF Chat Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups 2003 Pierre Del Moral
Laurent Miclo
1
+ Markov Chain Monte Carlo in Practice 1995 Walter R. Gilks
Sylvia Richardson
David J. Spiegelhalter
1
+ Spline Models for Observational Data. 1991 Hans‐Georg Müller
Grace Wahba
1
+ Minimax nonparametric classification .I. Rates of convergence 1999 Yuhong Yang
1
+ Statistical Analysis of Semi-Supervised Learning: The Limit of Infinite Unlabelled Data 2009 Boaz Nadler
Nathan Srebro
Xueyuan Zhou
1
+ PDF Chat Bounds on the Lambert Function and Their Application to the Outage Analysis of User Cooperation 2013 Ioannis Chatzigeorgiou
1
+ PDF Chat Dimensionality Reduction for Supervised Learning With Reproducing Kernel Hilbert Spaces 2003 Kenji Fukumizu
Francis R. Bach
Michael I. Jordan
1
+ PDF Chat Free energy methods for Bayesian inference: efficient exploration of univariate Gaussian mixture posteriors 2011 Nicolás Chopin
Tony Lelièvre
Gabriel Stoltz
1
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
1
+ Manopt, a Matlab toolbox for optimization on manifolds 2013 Nicolas Boumal
Bamdev Mishra
Pierre-Antoine Absil
Rodolphe Sepulchre
1
+ Generalization error bounds in semi-supervised classification under the cluster assumption 2006 Philippe Rigollet
1
+ On quasi-stationary distributions in absorbing continuous-time finite Markov chains 1967 J. N. Darroch
E. Seneta
1
+ A Fleming–Viot Particle Representation¶of the Dirichlet Laplacian 2000 Krzysztof Burdzy
Robert Hołyst
Peter March
1
+ Optimal Rates for Regularized Least Squares Regression. 2009 Ingo Steinwart
Don Hush
Clint Scovel
1
+ PDF Chat Quasi Stationary Distributions and Fleming-Viot Processes in Countable Spaces 2007 Pablo A. Ferrari
Nevena Marić
1