Abdulrahman Diaa

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ A Simple Way to Initialize Recurrent Networks of Rectified Linear Units 2015 Quoc V. Le
Navdeep Jaitly
Geoffrey E. Hinton
1
+ On the difficulty of training Recurrent Neural Networks 2012 Razvan Pascanu
Tomáš Mikolov
Yoshua Bengio
1
+ On Ideal Lattices and Learning with Errors over Rings 2010 Vadim Lyubashevsky
Chris Peikert
Oded Regev
1
+ PDF Chat Deep Learning with Differential Privacy 2016 Martı́n Abadi
Andy Chu
Ian Goodfellow
H. Brendan McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
1
+ Recurrent Orthogonal Networks and Long-Memory Tasks 2016 Mikael Henaff
Arthur Szlam
Yann LeCun
1
+ PDF Chat Privacy-friendly mobility analytics using aggregate location data 2016 Apostolos Pyrgelis
Emiliano De Cristofaro
Gordon J. Ross
1
+ Federated Optimization: Distributed Machine Learning for On-Device Intelligence 2016 Jakub Konečný
H. Brendan McMahan
Daniel Ramage
Peter Richtárik
1
+ PDF Chat Membership Inference Attacks Against Machine Learning Models 2017 Reza Shokri
Marco Stronati
Congzheng Song
Vitaly Shmatikov
1
+ PDF Chat Simplified minimal gated unit variations for recurrent neural networks 2017 Joel C. Heck
Fathi M. Salem
1
+ Learning Differentially Private Recurrent Language Models 2017 H. Brendan McMahan
Daniel Ramage
Kunal Talwar
Li Zhang
1
+ Scalable Private Learning with PATE 2018 Nicolas Papernot
Shuang Song
Ilya Mironov
Ananth Raghunathan
Kunal Talwar
Úlfar Erlingsson
1
+ Byzantine Stochastic Gradient Descent 2018 Dan Alistarh
Zeyuan Allen-Zhu
Jerry Li
1
+ Federated Learning for Mobile Keyboard Prediction 2018 Andrew Hard
Chloé Kiddon
Daniel Ramage
Françoise Beaufays
Hubert Eichner
K. Praveen Kumar Rao
Rajiv Mathews
Sean Augenstein
1
+ PDF Chat Towards Non-Saturating Recurrent Units for Modelling Long-Term Dependencies 2019 Sarath Chandar
Chinnadhurai Sankar
Eugene Vorontsov
Samira Ebrahimi Kahou
Yoshua Bengio
1
+ XONN: XNOR-based Oblivious Deep Neural Network Inference 2019 M. Sadegh Riazi
Mohammad Samragh
Hao Chen
Kim Laine
Kristin Lauter
Farinaz Koushanfar
1
+ Federated Learning Of Out-Of-Vocabulary Words 2019 Françoise Beaufays
Rajiv Mathews
1
+ PDF Chat Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning 2019 Milad Nasr
Reza Shokri
Amir Houmansadr
1
+ h-detach: Modifying the LSTM Gradient Towards Better Optimization 2018 Devansh Arpit
Bhargav Kanuparthi
Giancarlo Kerg
Nan Rosemary Ke
Ioannis Mitliagkas
Yoshua Bengio
1
+ Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning 2017 Briland Hitaj
Giuseppe Ateniese
Fernando Pérez‐Cruz
1
+ QUOTIENT: Two-Party Secure Neural Network Training and Prediction 2019 Nitin Agrawal
Ali Shahin Shamsabadi
Matt J. Kusner
Adrià Gascón
1
+ PDF Chat Exploiting Unintended Feature Leakage in Collaborative Learning 2019 Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
1
+ PDF Chat Gate-variants of Gated Recurrent Unit (GRU) neural networks 2017 Rahul Dey
Fathi M. Salem
1
+ Efficient Private Statistics with Succinct Sketches 2016 Luca Melis
George Danezis
Emiliano De Cristofaro
1
+ PDF Chat Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning 2019 Zhibo Wang
Mengkai Song
Zhifei Zhang
Yang Song
Qian Wang
Hairong Qi
1
+ On the Properties of Neural Machine Translation: Encoder–Decoder Approaches 2014 Kyunghyun Cho
Bart van Merriënboer
Dzmitry Bahdanau
Yoshua Bengio
1
+ PDF Chat Helen: Maliciously Secure Coopetitive Learning for Linear Models 2019 Wenting Zheng
Raluca Ada Popa
Joseph E. Gonzalez
Ion Stoica
1
+ Stealing machine learning models via prediction APIs 2016 Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
1
+ nGraph-HE2: A High-Throughput Framework for Neural Network Inference on Encrypted Data 2019 Fabian Boemer
Anamaria Costache
Rosario Cammarota
Casimir Wierzynski
1
+ PDF Chat A Hybrid Approach to Privacy-Preserving Federated Learning 2019 Stacey Truex
Nathalie Baracaldo
Ali Anwar
Thomas Steinke
Heiko Ludwig
Rui Zhang
Yi Zhou
1
+ PDF Chat Privacy-Preserving Federated Brain Tumour Segmentation 2019 Wenqi Li
Fausto Milletarì
Daguang Xu
Nicola Rieke
Jonny Hancox
Wentao Zhu
Maximilian Baust
Yan Cheng
Sébastien Ourselin
M. Jorge Cardoso
1
+ iDLG: Improved Deep Leakage from Gradients 2020 Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
1
+ Learning to Detect Malicious Clients for Robust Federated Learning 2020 Suyi Li
Yong Cheng
Wei Wang
Yang Liu
Tianjian Chen
1
+ BASGD: Buffered Asynchronous SGD for Byzantine Learning 2020 Yi-Rui Yang
Wu-Jun Li
1
+ Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning 2020 Harsh Chaudhari
Rahul Rachuri
Ajith Suresh
1
+ PDF Chat The Value of Collaboration in Convex Machine Learning with Differential Privacy 2020 Nan Wu
Farhad Farokhi
David B. Smith
Mohamed Ali Kâafar
1
+ Federated Learning With Differential Privacy: Algorithms and Performance Analysis 2020 Kang Wei
Jun Li
Ming Ding
Chuan Ma
Howard H. Yang
Farhad Farokhi
Shi Jin
Tony Q. S. Quek
H. Vincent Poor
1
+ PDF Chat PrivColl: Practical Privacy-Preserving Collaborative Machine Learning 2020 Yanjun Zhang
Guangdong Bai
Xue Li
Caitlin Curtis
Chen Chen
Ryan K. L. Ko
1
+ PDF Chat Data Poisoning Attacks Against Federated Learning Systems 2020 Vale Tolpegin
Stacey Truex
Mehmet Emre Gürsoy
Ling Liu
1
+ PDF Chat CrypTFlow2: Practical 2-Party Secure Inference 2020 Deevashwer Rathee
Mayank Rathee
Nishant Kumar
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
1
+ PDF Chat CRYPTOGRU: Low Latency Privacy-Preserving Text Analysis With GRU 2021 Bo Feng
Qian Lou
Lei Jiang
Geoffrey Fox
1
+ Fast secure matrix multiplications over ring-based homomorphic encryption 2020 Pradeep Kumar Mishra
Deevashwer Rathee
Dung Hoang Duong
Masaya Yasuda
1
+ PDF Chat HybridAlpha: An Efficient Approach for Privacy-Preserving Federated Learning 2019 Runhua Xu
Nathalie Baracaldo
Yi Zhou
Ali Anwar
Heiko Ludwig
1
+ PDF Chat Accelerating recurrent neural network training using sequence bucketing and multi-GPU data parallelization 2016 Viacheslav Khomenko
Oleg Shyshkov
Olga Radyvonenko
Kostiantyn Bokhan
1
+ BLAZE: Blazing Fast Privacy-Preserving Machine Learning 2020 Arpita Patra
Ajith Suresh
1
+ PDF Chat Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 2020 Sameer Wagh
Shruti Tople
Fabrice Benhamouda
Eyal Kushilevitz
Prateek Mittal
Tal Rabin
1
+ CaPC Learning: Confidential and Private Collaborative Learning 2021 Christopher A. Choquette-Choo
Natalie Dullerud
Adam Dziedzic
Yunxiang Zhang
Somesh Jha
Nicolas Papernot
Xiao Wang
1
+ PDF Chat SiRnn: A Math Library for Secure RNN Inference 2021 Deevashwer Rathee
Mayank Rathee
Rahul Kranti Kiran Goli
Divya Gupta
Rahul Sharma
Nishanth Chandran
Aseem Rastogi
1
+ POSEIDON: Privacy-Preserving Federated Neural Network Learning 2021 Sinem Sav
Apostolos Pyrgelis
Juan Ramón Troncoso-Pastoriza
David Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean‐Pierre Hubaux
1
+ PDF Chat Scalable Privacy-Preserving Distributed Learning 2021 David Froelicher
Juan Ramón Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean‐Pierre Hubaux
1
+ PDF Chat CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU 2021 Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
1