L.W. Lin

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
Tong Yang 1
Tony W. H. Sheu 1
Commonly Cited References
Action Title Year Authors # of times referenced
+ Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations 2009 Ernst Hairer
Christian Lubich
Gerhard Wanner
1
+ Numerical methods for Hamiltonian PDEs 2006 Thomas J. Bridges
Sebastian Reich
1
+ Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity 2001 Thomas J. Bridges
Sebastian Reich
1
+ Self-Focusing in the Damped Nonlinear Schrödinger Equation 2001 Gadi Fibich
1
+ A Note on the Symplectic Integration of the Nonlinear Schrödinger Equation 2004 Clemens Heitzinger
Christian Ringhofer
1
+ On Time-Splitting Spectral Approximations for the Schrödinger Equation in the Semiclassical Regime 2002 Weizhu Bao
Shi Jin
Peter A. Markowich
1
+ Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation 1999 Qianshun Chang
Erhui Jia
Weiwei Sun
1
+ Symplectic methods for the Ablowitz–Ladik discrete nonlinear Schrödinger equation 2007 Yifa Tang
Jianwen Cao
Xiangtao Liu
Yuanchang Sun
1
+ PDF Chat On the Modulational Instability of the Nonlinear SchrödingerEquation with Dissipation 2004 Zoi Rapti
P. G. Kevrekidis
D. J. Frantzeskakis
Boris A. Malomed
1
+ PDF Chat Classical numerical integrators for wave-packet dynamics 1996 J. M. Sanz‐Serna
A.M. Portillo
1
+ Symplectic algorithm for use in computing the time‐independent Schrödinger equation 2001 Xue‐Shen Liu
SU Li-wei
Peizhu Ding
1
+ Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes 2003 Weizhu Bao
Shi Jin
Peter A. Markowich
1
+ Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation 2002 Jing‐Bo Chen
Mengzhao Qin
Yifa Tang
1
+ Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit 1999 Peter A. Markowich
Paola Pietra
Carsten Pohl
1
+ Multi-Symplectic Runge–Kutta Collocation Methods for Hamiltonian Wave Equations 2000 Sebastian Reich
1
+ Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions 2007 Ayhan Aydın
BĂŒlent Karasözen
1
+ Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schrödinger Equation 2011 Yaming Chen
Huajun Zhu
Songhe Song
1
+ PDF Chat The Gaussian semiclassical soliton ensemble and numerical methods for the focusing nonlinear Schrödinger equation 2012 Long Lee
Gregory D. Lyng
Irena Vankova
1
+ Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schrodinger Equation 2011 Chen Ya
1