Steven D. Houston

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat A Computational Introduction to Number Theory and Algebra 2008 Victor Shoup
1
+ Lower Bounds for Least Quadratic Non-Residues 1990 S. W. Graham
C. J. Ringrose
1
+ Elementary Theory of Numbers 1988 WacƂaw SierpiƄski
1
+ Complexity of Computing Quadratic Nonresidues 2005 N. A. Carella
1
+ PDF Chat Proving primality in essentially quartic random time 2006 Daniel J. Bernstein
1
+ PDF Chat On the distribution of quadratic residues and nonresidues modulo a prime number 1992 René Peralta
1
+ PDF Chat Sparse polynomial multiplication and division in Maple 14 2011 Michael Monagan
Roman Pearce
1
+ Prime Numbers: A Computational Perspective 2012 Richard E. Crandall
Carl Pomerance
1
+ The distribution of quadratic residues and non‐residues 1957 D. A. Burgess
1
+ Carmichael numbers in number rings 2007 G. Ander Steele
1
+ PDF Chat On taking square roots without quadratic nonresidues over finite fields 2011 Tsz-Wo Sze
1
+ The Least Quadratic Non Residue 1952 N. C. Ankeny
1
+ Constructing Carmichael Numbers which are Strong Pseudoprimes to Several Bases 1995 François Arnault
1
+ PDF Chat The Carmichael numbers up to 10Âč⁔ 1993 Richard G. E. Pinch
1
+ PDF Chat Higher-order Carmichael numbers 2000 Everett W. Howe
1
+ PDF Chat Primality Testing with Gaussian Periods 2002 H. W. Lenstra
1
+ PDF Chat PRIMES is in P 2004 Manindra Agrawal
Neeraj Kayal
Nitin Saxena
1
+ PDF Chat Primality testing with Gaussian periods 2019 Hendrik W. Lenstra
Carl Pomerance
1
+ Faster polynomial multiplication over finite fields using cyclotomic coefficient rings 2019 David Harvey
Joris van der Hoeven
1
+ PDF Chat Conditional bounds for the least quadratic non-residue and related problems 2015 Youness Lamzouri
Xiannan Li
K. Soundararajan
1
+ PDF Chat The Elliott–Halberstam conjecture implies the Vinogradov least quadratic nonresidue conjecture 2015 Terence Tao
1
+ PDF Chat On Newton–Raphson Iteration for Multiplicative Inverses Modulo Prime Powers 2013 Jean‐Guillaume Dumas
1