Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Benoit Oriol
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
WeSpeR: Population spectrum retrieval and spectral density estimation of weighted sample covariance
2024
Benoit Oriol
+
Asymptotic spectrum of weighted sample covariance: a Marcenko-Pastur generalization
2024
Benoit Oriol
+
Asymptotic non-linear shrinkage formulas for weighted sample covariance
2024
Benoit Oriol
+
PDF
Chat
Analysis of a multi-target linear shrinkage covariance estimator
2024
Benoit Oriol
+
Ledoit-Wolf linear shrinkage with unknown mean
2023
Benoit Oriol
Alexandre Miot
+
On some theoretical limitations of Generative Adversarial Networks
2021
Benoit Oriol
Alexandre Miot
Common Coauthors
Coauthor
Papers Together
Alexandre Miot
2
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Comparison of linear shrinkage estimators of a large covariance matrix in normal and non-normal distributions
2015
Yuki Ikeda
Tatsuya Kubokawa
Muni S. Srivastava
1
+
The Brunn-Minkowski inequality in Gauss space
1975
Christer Borell
1
+
PDF
Chat
Extremal properties of half-spaces for spherically invariant measures
1978
V. N. Sudakov
Boris Tsirelson
1
+
PDF
Chat
Residual Life Time at Great Age
1974
A. A. Balkema
Laurens de Haan
1
+
PDF
Chat
An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space
1997
Sergey G. Bobkov
1
+
PDF
Chat
A well-conditioned estimator for large-dimensional covariance matrices
2003
Olivier Ledoit
Michael Wolf
1
+
PDF
Chat
Shrinkage Algorithms for MMSE Covariance Estimation
2010
Yilun Chen
Ami Wiesel
Yonina C. Eldar
Alfred O. Hero
1
+
G2-estimator for the Stieltjes Transform of the Normalized Spectral Function of Covariance Matrices
1995
Vyacheslav L. Girko
1
+
PDF
Chat
G-analysis of high-dimensional observations
1992
Vyacheslav L. Girko
1
+
Lectures on Lipschitz analysis
2005
Juha Heinonen
1
+
Understanding the exploding gradient problem
2012
Razvan Pascanu
Tomáš Mikolov
Yoshua Bengio
1
+
PDF
Chat
A theoretical study of Stein's covariance estimator
2016
Bala Rajaratnam
Dario Vincenzi
1
+
Linear shrinkage estimation of large covariance matrices using factor models
2016
Yuki Ikeda
Tatsuya Kubokawa
1
+
High-Dimensional Probability: An Introduction with Applications in Data Science
2018
Roman Vershynin
1
+
PDF
Chat
Analytical nonlinear shrinkage of large-dimensional covariance matrices
2020
Olivier Ledoit
Michael Wolf
1
+
Nonlinear shrinkage estimation of large-dimensional covariance matrices
2012
Olivier Ledoit
Michael Wolf
1
+
Large Dimensional Analysis and Optimization of Robust Shrinkage Covariance Matrix Estimators
2014
Romain Couillet
Matthew R. McKay
1
+
Copula & Marginal Flows: Disentangling the Marginal from its Joint
2019
Magnus Wiese
Robert Knobloch
Ralf Korn
1
+
PDF
Chat
Optimal shrinkage for robust covariance matrix estimators in a small sample size setting
2021
Karina Ashurbekova
Antoine Usseglio‐Carleve
Florence Forbes
Sophie Achard
1
+
PDF
Chat
Nonlinear 3D cosmic web simulation with heavy-tailed generative adversarial networks
2020
Richard M. Feder
Philippe Berger
George Stein
1
+
PDF
Chat
Optimal estimation of a large-dimensional covariance matrix under Stein’s loss
2018
Olivier Ledoit
Michael Wolf
1
+
Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distributions
2021
Todd Huster
Jérémy E. Cohen
Zinan Lin
Kevin Chan
Charles Kamhoua
Nandi Leslie
Cho‐Yu Jason Chiang
Vyas Sekar
1
+
Estimation of a covariance matrix
1975
C. Stein
1
+
PDF
Chat
Approximation by superpositions of a sigmoidal function
1992
George Cybenko
1
+
Adversarial vulnerability for any classifier
2018
Alhussein Fawzi
Hamza Fawzi
Omar Fawzi
1
+
Random Matrix Theory Proves that Deep Learning Representations of GAN-data Behave as Gaussian Mixtures
2020
Mohamed El Amine Seddik
Cosme Louart
Mohamed Tamaazousti
Romain Couillet
1