Sándor Rokob

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
Tamás F. Móri 6
Balázs Ráth 5
Márton Borbényi 2
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat On the convergence of supercritical general (C-M-J) branching processes 1981 Olle Nerman
4
+ An Introduction to Random Interlacements 2014 Alexander Drewitz
Balázs Ráth
Artëm Sapozhnikov
3
+ PDF Chat Vacant set of random interlacements and percolation 2010 Alain‐Sol Sznitman
3
+ PDF Chat Finitary random interlacements and the Gaboriau–Lyons problem 2019 Lewis Bowen
3
+ PDF Chat An Upper Bound on the Critical Percolation Probability for the Three- Dimensional Cubic Lattice 1985 Massimo Campanino
Lucio Russo
2
+ On the range of random walk 1968 Nishesh Jain
Steven Orey
2
+ PDF Chat Distribution Function Inequalities for Martingales 1973 D. L. Burkholder
2
+ PDF Chat Decoupling inequalities and supercritical percolation for the vacant set of random walk loop soup 2019 Caio Alves
Artëm Sapozhnikov
2
+ Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster 2016 Dirk Erhard
Julián Martínez
Julien Poisat
2
+ Branching processes in the analysis of the heights of trees 1987 Luc Devroye
2
+ PDF Chat Phase transition in loop percolation 2015 Yinshan Chang
Artëm Sapozhnikov
2
+ PDF Chat Ellipses Percolation 2017 Augusto Teixeira
Daniel Ungaretti
2
+ On Chemical Distance and Local Uniqueness of a Sufficiently Supercritical Finitary Random Interlacement 2020 Zhenhao Cai
Xiao Han
Jiayan Ye
Yuan Zhang
2
+ Population-size-dependent and age-dependent branching processes 2000 Peter Jagers
Fima C. Klebaner
2
+ Growth of preferential attachment random graphs via continuous-time branching processes 2008 Krishna B. Athreya
Arka P. Ghosh
Sunder Sethuraman
2
+ PDF Chat Some Problems on Random Walk in Space 1951 A Dvoretzky
Péter L. Erdős
2
+ Connectivity properties of random interlacement and intersection of random walks 2010 Balázs Ráth
Artëm Sapozhnikov
2
+ Capacity of the range of random walk on $\mathbb {Z}^d$ 2017 Amine Asselah
Bruno Schapira
Perla Sousi
2
+ Percolation for the Finitary Random interlacements 2020 Eviatar B. Procaccia
Jiayan Ye
Yuan Zhang
2
+ PDF Chat On (Non-)Monotonicity and Phase Diagram of Finitary Random Interlacement 2021 Zhenhao Cai
Yunfeng Xiong
Yuan Zhang
2
+ Bernoulli hyper-edge percolation on Zd 2021 Yinshan Chang
2
+ Euclidean and chemical distances in ellipses percolation 2021 Marcelo R. Hilário
Daniel Ungaretti
2
+ PDF Chat A Martingale Approach to Supercritical (CMJ) Branching Processes 1985 Harry Cohn
2
+ The asymptotic shape of the branching random walk 1978 J. D. Biggins
2
+ PDF Chat Weights and Degrees in a Random Graph Model Based on 3-Interactions 2014 Ágnes Backhausz
Tamás F. Móri
2
+ Some properties of random walk paths 1973 Naresh C. Jain
Steven Orey
2
+ Analysis of Centrality in Sublinear Preferential Attachment Trees via the Crump-Mode-Jagers Branching Process 2016 Varun Jog
Po‐Ling Loh
2
+ PDF Chat Population-size-dependent branching processes 1996 Peter Jagers
2
+ The supercritical phase of percolation is well behaved 1990 Geoffrey Grimmett
J. M. Marstrand
2
+ Supercritical loop percolation on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" id="mml1" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math>for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" id="mml2" overflow="scroll"><mml:mi>d</mml:mi><mml:mo>≥</mml:mo><mml:mn>3</mml:mn></mml:math> 2017 Yinshan Chang
2
+ PDF Chat Random Walk: A Modern Introduction 2010 Gregory F. Lawler
Vlada Limic
2
+ PDF Chat Weights of Cliques in a Random Graph Model Based on Three-Interactions* 2015 István Fazekas
Csaba Noszály
Attila Perecsényi
2
+ Fringe trees, Crump–Mode–Jagers branching processes and $m$-ary search trees 2017 Cecilia Holmgren
Svante Janson
2
+ Markovian loop clusters on graphs 2013 Yves Le Jan
Sophie Lemaire
2
+ PDF Chat Equality of critical parameters for percolation of Gaussian free field level sets 2023 Hugo Duminil‐Copin
Subhajit Goswami
Pierre‐François Rodriguez
Franco Severo
1
+ PDF Chat Finitary codings for spatial mixing Markov random fields 2020 Yinon Spinka
1
+ PDF Chat Markov chains with exponential return times are finitary 2020 Omer Angel
Yinon Spinka
1
+ PDF Chat Two-Dimensional Random Interlacements and Late Points for Random Walks 2015 Francis Comets
Serguei Popov
Marina Vachkovskaia
1
+ PDF Chat Subcritical regimes in the Poisson Boolean model of continuum percolation 2008 Jean-Baptiste Gouéré
1
+ PDF Chat Percolation in the vacant set of Poisson cylinders 2011 Johan Tykesson
David Windisch
1
+ PDF Chat Interlacements and the wired uniform spanning forest 2018 Tom Hutchcroft
1
+ PDF Chat Disconnection, random walks, and random interlacements 2015 Alain‐Sol Sznitman
1
+ PDF Chat Finitary codings for gradient models and a new graphical representation for the six‐vertex model 2021 Gourab Ray
Yinon Spinka
1
+ PDF Chat Continuity and uniqueness of percolation critical parameters in finitary random interlacements 2022 Zhenhao Cai
Eviatar B. Procaccia
Yuan Zhang
1
+ On the exact orders of critical value in Finitary Random Interlacements 2021 Zhenhao Cai
Yuan Zhang
1
+ PDF Chat Ising Model on Trees and Factors of IID 2022 Danny Nam
Allan Sly
Lingfu Zhang
1
+ PDF Chat Finite Groups of Order <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msup> <mrow> <mi>p</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </math>qr in which the Number of Elements of Maximal Order Is <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <msup> <mrow> <mi>p</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msup> <mi>q</mi> <mi>∗</mi> </math> 2022 Qingliang Zhang
Liang Xu
1
+ An Improved Bonferroni Inequality and Applications 1982 Keith J. Worsley
1
+ PDF Chat Finitary codings for the random-cluster model and other infinite-range monotone models 2022 Matan Harel
Yinon Spinka
1
+ A random graph model based on 3-interactions 2011 Ágnes Backhausz
Tamás F. Móri
1