John Schulman

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Measuring short-form factuality in large language models 2024 Jason Lee
Nguyen Karina
Hyung Won Chung
Yunxin Joy Jiao
Spencer Papay
Amelia Glaese
John Schulman
William Fedus
+ PDF Chat Rule Based Rewards for Language Model Safety 2024 Tong Mu
Alec Helyar
Johannes Heidecke
Joshua Achiam
Andrea Vallone
Ian Kivlichan
Molly Lin
Alex Beutel
John Schulman
Lilian Weng
+ PDF Chat GPT-4o System Card 2024 OpenAI
NULL AUTHOR_ID
A. M. Hurst
Adam Lerer
Adam P. Goucher
Adam Perelman
Aditya Ramesh
Aidan Clark
AJ Ostrow
Akila Welihinda
+ Training Verifiers to Solve Math Word Problems 2021 Karl Cobbe
Vineet Kosaraju
Mohammad Bavarian
Jacob Hilton
Reiichiro Nakano
Christopher Hesse
John Schulman
+ Batch size-invariance for policy optimization. 2021 Jacob Hilton
Karl Cobbe
John Schulman
+ Measuring Sample Efficiency and Generalization in Reinforcement Learning Benchmarks: NeurIPS 2020 Procgen Benchmark 2021 Sharada P. Mohanty
Jyotish Poonganam
Adrien Gaidon
Andrey Kolobov
Blake Wulfe
Dipam Chakraborty
Gražvydas Šemetulskis
João Schapke
Jonas Kubilius
Jurgis Pašukonis
+ Unsolved Problems in ML Safety 2021 Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
+ Phasic Policy Gradient 2020 Karl Cobbe
Jacob Hilton
Oleg Klimov
John Schulman
+ Scaling Laws for Autoregressive Generative Modeling 2020 Tom Henighan
Jared Kaplan
Mor Katz
Mark Chen
Christopher Hesse
Jacob Jackson
Heewoo Jun
T. B. Brown
Prafulla Dhariwal
Scott Gray
+ PDF Chat Teacher–Student Curriculum Learning 2019 Tambet Matiisen
Avital Oliver
Taco Cohen
John Schulman
+ Policy Gradient Search: Online Planning and Expert Iteration without Search Trees 2019 Thomas Anthony
Robert Nishihara
Philipp Moritz
Tim Salimans
John Schulman
+ Semi-Supervised Learning by Label Gradient Alignment 2019 Jacob Jackson
John Schulman
+ The MineRL 2019 Competition on Sample Efficient Reinforcement Learning using Human Priors 2019 William H. Guss
Mario Ynocente Castro
Sam Devlin
Brandon Houghton
Noboru Sean Kuno
Crissman Loomis
Stephanie Milani
Sharada P. Mohanty
Keisuke Nakata
Ruslan Salakhutdinov
+ Leveraging Procedural Generation to Benchmark Reinforcement Learning 2019 Karl Cobbe
Christopher Hesse
Jacob Hilton
John Schulman
+ Quantifying Generalization in Reinforcement Learning 2018 Karl Cobbe
Oleg Klimov
Chris Hesse
Taehoon Kim
John Schulman
+ Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations 2018 Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
Giulia Vezzani
John Schulman
Emanuel Todorov
Sergey Levine
+ Gotta Learn Fast: A New Benchmark for Generalization in RL 2018 Alex Nichol
Vicki Pfau
Christopher Hesse
Oleg Klimov
John Schulman
+ Reptile: a Scalable Metalearning Algorithm 2018 Alex Nichol
John Schulman
+ On First-Order Meta-Learning Algorithms. 2018 Alex Nichol
Joshua Achiam
John Schulman
+ Model-Based Reinforcement Learning via Meta-Policy Optimization 2018 Ignasi Clavera
Jonas Rothfuss
John Schulman
Yasuhiro Fujita
Tamim Asfour
Pieter Abbeel
+ Meta Learning Shared Hierarchies 2017 Kevin Frans
Jonathan Ho
Xi Chen
Pieter Abbeel
John Schulman
+ Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations 2017 Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
John Schulman
Emanuel Todorov
Sergey Levine
+ Teacher-Student Curriculum Learning 2017 Tambet Matiisen
Avital Oliver
Taco Cohen
John Schulman
+ UCB and InfoGain Exploration via $\boldsymbol{Q}$-Ensembles. 2017 Richard Y. Chen
Szymon Sidor
Pieter Abbeel
John Schulman
+ Equivalence Between Policy Gradients and Soft Q-Learning 2017 John Schulman
Xi Chen
Pieter Abbeel
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
+ UCB Exploration via Q-Ensembles 2017 Richard Y. Chen
Szymon Sidor
Pieter Abbeel
John Schulman
+ Meta Learning Shared Hierarchies 2017 Kevin Frans
Jonathan Ho
Xi Chen
Pieter Abbeel
John Schulman
+ InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets 2016 Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
+ OpenAI Gym 2016 Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
+ Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks. 2016 Rein Houthooft
Xi Chen
Yan Duan
John Schulman
Filip De Turck
Pieter Abbeel
+ Benchmarking Deep Reinforcement Learning for Continuous Control 2016 Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
+ Theano: A Python framework for fast computation of mathematical expressions 2016 The Theano Development Team
Rami Al‐Rfou
Guillaume Alain
Amjad Almahairi
Christof Angermueller
Dzmitry Bahdanau
Nicolas Ballas
Frédéric Bastien
Justin Bayer
Anatoly Belikov
+ VIME: Variational Information Maximizing Exploration 2016 Rein Houthooft
Xi Chen
Yan Duan
John Schulman
Filip De Turck
Pieter Abbeel
+ Concrete Problems in AI Safety 2016 Dario Amodei
Chris Olah
Jacob Steinhardt
Paul F. Christiano
John Schulman
Dan Mané
+ RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning 2016 Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
+ #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning 2016 Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
Filip De Turck
Pieter Abbeel
+ Variational Lossy Autoencoder 2016 Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
+ InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets 2016 Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
+ OpenAI Gym 2016 Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
+ High-Dimensional Continuous Control Using Generalized Advantage Estimation 2015 John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
+ Trust Region Policy Optimization 2015 John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
+ Gradient Estimation Using Stochastic Computation Graphs 2015 John Schulman
Nicolas Heess
Théophane Weber
Pieter Abbeel
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
11
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
9
+ Trust Region Policy Optimization 2015 John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
8
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
6
+ Benchmarking Deep Reinforcement Learning for Continuous Control 2016 Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
6
+ PDF Chat The Arcade Learning Environment: An Evaluation Platform for General Agents 2013 Marc G. Bellemare
Yavar Naddaf
Joel Veness
Michael Bowling
6
+ Continuous control with deep reinforcement learning 2015 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
6
+ High-Dimensional Continuous Control Using Generalized Advantage Estimation 2015 John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
5
+ Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models 2015 Bradly C. Stadie
Sergey Levine
Pieter Abbeel
4
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
4
+ End-to-End Training of Deep Visuomotor Policies 2015 Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
4
+ Weight Uncertainty in Neural Networks 2015 Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
3
+ Deep Exploration via Bootstrapped DQN 2016 Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
3
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
3
+ Gotta Learn Fast: A New Benchmark for Generalization in RL 2018 Alex Nichol
Vicki Pfau
Christopher Hesse
Oleg Klimov
John Schulman
3
+ End to End Learning for Self-Driving Cars 2016 Mariusz Bojarski
Davide Del Testa
Daniel Dworakowski
Bernhard Firner
Beat Flepp
Prasoon Goyal
Lawrence D. Jackel
Mathew Monfort
Urs Müller
Jiakai Zhang
3
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ Dota 2 with Large Scale Deep Reinforcement Learning 2019 Christopher Berner
Greg Brockman
Brooke Chan
Vicki Cheung
Przemyslaw Debiak
Christy Dennison
David Farhi
Quirin Fischer
Shariq Hashme
Christopher Hesse
3
+ VIME: Variational Information Maximizing Exploration 2016 Rein Houthooft
Xi Chen
Yan Duan
John Schulman
Filip De Turck
Pieter Abbeel
3
+ Emergence of Locomotion Behaviours in Rich Environments 2017 Nicolas Heess
Dhruva Tb
Sriram Srinivasan
Jay Lemmon
Josh Merel
Greg Wayne
Yuval Tassa
Tom Erez
Ziyu Wang
S. M. Ali Eslami
3
+ Neural GPUs Learn Algorithms 2015 Łukasz Kaiser
Ilya Sutskever
3
+ IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures 2018 Lasse Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymir Mnih
Tom Ward
Yotam Doron
Vlad Firoiu
Tim Harley
Iain Dunning
3
+ Continuous control with deep reinforcement learning 2016 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
2
+ A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning 2010 Stéphane Ross
Geoffrey J. Gordon
J. Andrew Bagnell
2
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
2
+ Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU 2016 Mohammad Babaeizadeh
Iuri Frosio
Stephen Tyree
Jason Clemons
Jan Kautz
2
+ Assessing Generalization in Deep Reinforcement Learning 2018 Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krähenbühl
Vladlen Koltun
Dawn Song
2
+ Learning Continuous Control Policies by Stochastic Value Gradients 2015 Nicolas Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
2
+ Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles 2016 Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
2
+ PDF Chat Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents 2018 Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
Joel Veness
Matthew Hausknecht
Michael Bowling
2
+ Illuminating Generalization in Deep Reinforcement Learning through Procedural Level Generation 2018 Niels Justesen
Rubén Rodríguez Torrado
Philip Bontrager
Ahmed Khalifa
Julian Togelius
Sebastian Risi
2
+ An Empirical Model of Large-Batch Training 2018 Sam McCandlish
Jared Kaplan
Dario Amodei
OpenAI Dota Team
2
+ Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction 2017 Wen Sun
Arun Venkatraman
Geoffrey J. Gordon
Byron Boots
J. Andrew Bagnell
2
+ PDF Chat A Deep Hierarchical Approach to Lifelong Learning in Minecraft 2017 Chen Tessler
Shahar Givony
Tom Zahavy
Daniel J. Mankowitz
Shie Mannor
2
+ PDF Chat Deep Reinforcement Learning That Matters 2018 Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
2
+ Learning from Demonstrations for Real World Reinforcement Learning 2017 Todd Hester
Matej Vecerík
Olivier Pietquin
Marc Lanctot
Tom Schaul
Bilal Piot
Andrew Sendonaris
Gabriel Dulac-Arnold
Ian Osband
John Agapiou
2
+ Meta-Learning and Universality: Deep Representations and Gradient Descent can Approximate any Learning Algorithm 2017 Chelsea Finn
Sergey Levine
2
+ PDF Chat Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic Environments 2011 Yi Sun
Faustino Gomez
Jürgen Schmidhuber
2
+ Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play 2017 Sainbayar Sukhbaatar
Zeming Lin
Ilya Kostrikov
Gabriel Synnaeve
Arthur Szlam
Rob Fergus
2
+ Matching Networks for One Shot Learning 2016 Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
2
+ Multi-Armed Bandits for Intelligent Tutoring Systems 2013 Benjamin Clément
Didier Roy
Pierre-Yves Oudeyer
Manuel Lopes
2
+ PDF Chat Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates 2017 Shixiang Gu
Ethan Holly
Timothy Lillicrap
Sergey Levine
2
+ Sample Efficient Actor-Critic with Experience Replay 2016 Ziyu Wang
Victor Bapst
Nicolas Heess
Volodymyr Mnih
Rémi Munos
Koray Kavukcuoglu
Nando de Freitas
2
+ Automatic Goal Generation for Reinforcement Learning Agents 2017 Carlos Florensa
David Held
Xinyang Geng
Pieter Abbeel
2
+ Reinforcement Learning from Imperfect Demonstrations 2018 Yang Gao
Huazhe
Xu
Ji Lin
Fisher Yu
Sergey Levine
Trevor Darrell
2
+ Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards 2017 Matej Vecerík
Todd Hester
Jonathan Scholz
Fumin Wang
Olivier Pietquin
Bilal Piot
Nicolas Heess
Thomas Rothörl
Thomas Lampe
Martin Riedmiller
2
+ PDF Chat On the shortest spanning subtree of a graph and the traveling salesman problem 1956 Joseph B. Kruskal
2
+ A Dissection of Overfitting and Generalization in Continuous Reinforcement Learning 2018 Amy Zhang
Nicolas Ballas
Joëlle Pineau
2
+ Generalization and Regularization in DQN 2018 Jesse Farebrother
Marlos C. Machado
Michael Bowling
2
+ A Deep Hierarchical Approach to Lifelong Learning in Minecraft 2016 Chen Tessler
Shahar Givony
Tom Zahavy
Daniel J. Mankowitz
Shie Mannor
2