Matthias Hüser

Follow

Generating author description...

All published works
Action Title Year Authors
+ Early prediction of respiratory failure in the intensive care unit. 2021 Matthias Hüser
Martin Faltys
Xinrui Lyu
Chris Barber
Stephanie L. Hyland
Tobias M. Merz
Gunnar Rätsch
+ Neighborhood Contrastive Learning Applied to Online Patient Monitoring 2021 Hugo Yèche
Gideon Dresdner
Francesco Locatello
Matthias Hüser
Gunnar Rätsch
+ HiRID-ICU-Benchmark -- A Comprehensive Machine Learning Benchmark on High-resolution ICU Data 2021 Hugo Yèche
Rita Kuznetsova
Marc Zimmermann
Matthias Hüser
Xinrui Lyu
Martin Faltys
Gunnar Rätsch
+ Early prediction of respiratory failure in the intensive care unit 2021 Matthias Hüser
Martin Faltys
Xinrui Lyu
Chris Barber
Stephanie L. Hyland
Tobias M. Merz
Gunnar Rätsch
+ WRSE - a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU. 2020 Jonathan Heitz
Joanna Ficek
Martin Faltys
Tobias M. Merz
Gunnar Rätsch
Matthias Hüser
+ WRSE -- a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU 2020 Jonathan Heitz
Joanna Ficek
Martin Faltys
Tobias M. Merz
Gunnar Rätsch
Matthias Hüser
+ PDF Chat Forecasting intracranial hypertension using multi-scale waveform metrics 2019 Matthias Hüser
Adrian Kündig
Walter Karlen
Valéria De Luca
Martin Jaggi
+ Machine learning for early prediction of circulatory failure in the intensive care unit 2019 Stephanie L. Hyland
Martin Faltys
Matthias Hüser
Xinrui Lyu
Thomas Gumbsch
Cristóbal Esteban
Christian Bock
Max Horn
Michael Moor
Bastian Rieck
+ DPSOM: Deep Probabilistic Clustering with Self-Organizing Maps 2019 Laura Manduchi
Matthias Hüser
Julia E. Vogt
Gunnar Rätsch
Vincent Fortuin
+ Deep Self-Organization: Interpretable Discrete Representation Learning on Time Series 2018 Vincent Fortuin
Matthias Hüser
Francesco Locatello
Heiko Strathmann
Gunnar Rätsch
+ SOM-VAE: Interpretable Discrete Representation Learning on Time Series 2018 Vincent Fortuin
Matthias Hüser
Francesco Locatello
Heiko Strathmann
Gunnar Rätsch
+ Improving Clinical Predictions through Unsupervised Time Series Representation Learning 2018 Xinrui Lyu
Matthias Hüser
Stephanie L. Hyland
George Zerveas
Gunnar Rätsch
+ SOM-VAE: Interpretable Discrete Representation Learning on Time Series 2018 Vincent Fortuin
Matthias Hüser
Francesco Locatello
Heiko Strathmann
Gunnar Rätsch
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
2
+ RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism 2016 Edward Choi
Mohammad Taha Bahadori
Jimeng Sun
Joshua A. Kulas
Andy Schuetz
Walter F. Stewart
2
+ Consistent Individualized Feature Attribution for Tree Ensembles. 2018 Scott Lundberg
Gabriel Erion
Su‐In Lee
2
+ Nonparametric Estimation from Incomplete Observations 1992 Edward L. Kaplan
Paul Meier
1
+ PDF Chat Bag-of-words representation for biomedical time series classification 2013 Jin Wang
Ping Liu
Mary She
Saeid Nahavandi
Abbas Z. Kouzani
1
+ The Lognormal Distribution as a Model for Survival Time in Cancer, With an Emphasis on Prognostic Factors 2001 Patrick Royston
1
+ The Lorenz attractor exists 1999 Warwick Tucker
1
+ Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models 2015 Andrew Wey
John Connett
Kyle Rudser
1
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
1
+ PDF Chat Deterministic Nonperiodic Flow 1963 Edward N. Lorenz
1
+ Discriminative Unsupervised Feature Learning with Convolutional Neural Networks 2014 Alexey Dosovitskiy
Jost Tobias Springenberg
Martin Riedmiller
Thomas Brox
1
+ PDF Chat Representation Learning: A Review and New Perspectives 2013 Yoshua Bengio
Aaron Courville
P. M. Durai Raj Vincent
1
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
1
+ InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets 2016 Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
1
+ Multi-task Prediction of Disease Onsets from Longitudinal Lab Tests 2016 Narges Razavian
Jake Marcus
David Sontag
1
+ PDF Chat Unsupervised Pretraining for Sequence to Sequence Learning 2017 Prajit Ramachandran
Peter Liu
Quoc V. Le
1
+ Canonical Correlation Analysis for Analyzing Sequences of Medical Billing Codes 2016 Corinne L. Jones
Sham M. Kakade
Lucas W. Thornblade
David R. Flum
Abraham D. Flaxman
1
+ The Use of Autoencoders for Discovering Patient Phenotypes 2017 Harini Suresh
Peter Szolovits
Marzyeh Ghassemi
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs 2017 Cristóbal Esteban
Stephanie L. Hyland
Gunnar Rätsch
1
+ Consistent feature attribution for tree ensembles 2017 Scott Lundberg
Su‐In Lee
1
+ Identifying Similar Patients Using Self-Organising Maps: A Case Study on Type-1 Diabetes Self-care Survey Responses 2015 Santosh Tirunagari
Norman Poh
Guosheng Hu
David Windridge
1
+ Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms 2017 Xiao Han
Kashif Rasul
Roland Vollgraf
1
+ Predicting Severe Sepsis Using Text from the Electronic Health Record. 2017 Phil Culliton
Michael Levinson
Alice Ehresman
Joshua Wherry
Jay S. Steingrub
Stephen I. Gallant
1
+ Deep Unsupervised Clustering Using Mixture of Autoencoders 2017 Dejiao Zhang
Yifan Sun
Brian Eriksson
Laura Balzano
1
+ Clustering with Deep Learning: Taxonomy and New Methods 2018 Elie Aljalbout
Vladimir Golkov
Yawar Siddiqui
Daniel Cremers
1
+ Recurrent Neural Network-Based Semantic Variational Autoencoder for Sequence-to-Sequence Learning 2018 Myeongjun Jang
Seungwan Seo
Pilsung Kang
1
+ PDF Chat DeepHit: A Deep Learning Approach to Survival Analysis With Competing Risks 2018 Changhee Lee
William R. Zame
Jinsung Yoon
Mihaela van der Schaar
1
+ Modeling Progression Free Survival in Breast Cancer with Tensorized Recurrent Neural Networks and Accelerated Failure Time Models 2017 Yinchong Yang
Peter A. Fasching
Volker Tresp
1
+ An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling 2018 Shaojie Bai
J. Zico Kolter
Vladlen Koltun
1
+ Disease-Atlas: Navigating Disease Trajectories with Deep Learning 2018 Bryan Lim
Mihaela van der Schaar
1
+ Hierarchical Disentangled Representations 2018 Babak Esmaeili
Hao Wu
Sarthak Jain
N. Siddharth
Brooks Paige
Jan-Willem van de Meent
1
+ PDF Chat A scalable discrete-time survival model for neural networks 2019 Michael F. Gensheimer
Balasubramanian Narasimhan
1
+ Structured Disentangled Representations 2018 Babak Esmaeili
Hao Wu
Sarthak Jain
Alican Bozkurt
N. Siddharth
Brooks Paige
Dana H. Brooks
Jennifer Dy
Jan-Willem van de Meent
1
+ PDF Chat Improving palliative care with deep learning 2018 Anand Avati
Kenneth Jung
Stephanie Harman
N. Lance Downing
Andrew Y. Ng
Nigam H. Shah
1
+ Competitive Training of Mixtures of Independent Deep Generative Models 2018 Francesco Locatello
Damien Vincent
Ilya Tolstikhin
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
1
+ Temporal Quilting for Survival Analysis 2019 Chang‐Hee Lee
William R. Zame
Ahmed M. Alaa
Mihaela van der Schaar
1
+ Distributed Representations of Sentences and Documents 2014 Quoc V. Le
Tomáš Mikolov
1
+ Sequence to Sequence Learning with Neural Networks 2014 Ilya Sutskever
Oriol Vinyals
Quoc V. Le
1
+ Distributed Representations of Words and Phrases and their Compositionality 2013 Tomáš Mikolov
Ilya Sutskever
Kai Chen
Greg S. Corrado
Jay B. Dean
1
+ Sequence-to-Sequence Models Can Directly Translate Foreign Speech 2017 Ron J. Weiss
Jan Chorowski
Navdeep Jaitly
Yonghui Wu
Zhifeng Chen
1
+ SOM-VAE: Interpretable Discrete Representation Learning on Time Series 2018 Vincent Fortuin
Matthias Hüser
Francesco Locatello
Heiko Strathmann
Gunnar Rätsch
1
+ TensorFlow: A system for large-scale machine learning 2016 Martı́n Abadi
Paul Barham
Jianmin Chen
Zhifeng Chen
Andy Davis
Jay B. Dean
Matthieu Devin
Sanjay Ghemawat
Geoffrey Irving
Michael Isard
1
+ Neural Discrete Representation Learning 2017 Aäron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
1
+ Ask Me Anything: Dynamic Memory Networks for Natural Language Processing 2015 Ankit Kumar
Ozan İrsoy
Peter Ondrúška
Mohit Iyyer
James Bradbury
Ishaan Gulrajani
Victor W. Zhong
Romain Paulus
Richard Socher
1
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
1
+ Continuous and Discrete-Time Survival Prediction with Neural Networks 2019 Håvard Kvamme
Ørnulf Borgan
1
+ Effective Ways to Build and Evaluate Individual Survival Distributions 2020 Humza Haider
Bret Hoehn
S. Lindsey Davis
Russell Greiner
1
+ PDF Chat DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning 2019 Benjamin Shickel
Tyler J. Loftus
Lasith Adhikari
Tezcan Ozrazgat‐Baslanti
Azra Bihorac
Parisa Rashidi
1
+ PDF Chat Random survival forests 2008 Hemant Ishwaran
Udaya B. Kogalur
Eugene H. Blackstone
Michael S. Lauer
1