Malik Tiomoko

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat User-friendly Foundation Model Adapters for Multivariate Time Series Classification 2024 Vasilii Feofanov
Romain Ilbert
Malik Tiomoko
Themis Palpanas
Ievgen Redko
+ Random matrix theory improved Fréchet mean of symmetric positive definite matrices 2024 Florent Bouchard
Ammar Mian
Malik Tiomoko
Guillaume Ginolhac
Frédéric Pascal
+ PDF Chat Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting 2024 Romain Ilbert
Malik Tiomoko
Cosme Louart
Ambroise Odonnat
Vasilii Feofanov
Themis Palpanas
Ievgen Redko
+ Random Matrix Analysis to Balance between Supervised and Unsupervised Learning under the Low Density Separation Assumption 2023 Vasilii Feofanov
Malik Tiomoko
Aladin Virmaux
+ Multi-task learning on the edge: cost-efficiency and theoretical optimality 2021 Sami Fakhry
Romain Couillet
Malik Tiomoko
+ PCA-based Multi Task Learning: a Random Matrix Approach 2021 Malik Tiomoko
Romain Couillet
Frédéric Pascal
+ PDF Chat Random matrix improved covariance estimation for a large class of metrics* 2020 Malik Tiomoko
Florent Bouchard
Guillaume Ginolhac
Romain Couillet
+ Large Dimensional Analysis and Improvement of Multi Task Learning 2020 Malik Tiomoko
Romain Couillet
Hafiz Tiomoko
+ PDF Chat Estimation of Covariance Matrix Distances in the High Dimension Low Sample Size Regime 2019 Malik Tiomoko
Romain Couillet
+ PDF Chat Random Matrix-Improved Estimation of the Wasserstein Distance between two Centered Gaussian Distributions 2019 Malik Tiomoko
Romain Couillet
+ Random matrix-improved estimation of covariance matrix distances 2019 Romain Couillet
Malik Tiomoko
Steeve Zozor
Éric Moisan
+ PDF Chat Improved Estimation of the Distance between Covariance Matrices 2019 Malik Tiomoko
Romain Couillet
Éric Moisan
Steeve Zozor
+ Random Matrix-Improved Estimation of the Wasserstein Distance between two Centered Gaussian Distributions 2019 Malik Tiomoko
Romain Couillet
+ Random Matrix-Improved Estimation of the Wasserstein Distance between two Centered Gaussian Distributions 2019 Malik Tiomoko
Romain Couillet
+ Random matrix-improved estimation of covariance matrix distances 2018 Romain Couillet
Malik Tiomoko
Steeve Zozor
Éric Moisan
+ Random matrix-improved estimation of covariance matrix distances 2018 Romain Couillet
Malik Tiomoko
Steeve Zozor
Éric Moisan
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices 1995 Jack W. Silverstein
Zhidong Bai
6
+ On the Asymptotic Behavior of the Sample Estimates of Eigenvalues and Eigenvectors of Covariance Matrices 2008 Xavier Mestre
5
+ Random matrix-improved estimation of covariance matrix distances 2018 Romain Couillet
Malik Tiomoko
Steeve Zozor
Éric Moisan
4
+ PDF Chat A well-conditioned estimator for large-dimensional covariance matrices 2003 Olivier Ledoit
Michael Wolf
3
+ PDF Chat Numerical implementation of the QuEST function 2017 Olivier Ledoit
Michael Wolf
3
+ DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES 1967 V A Marčenko
L. А. Pastur
3
+ PDF Chat Analysis of the limiting spectral measure of large random matrices of the separable covariance type 2014 Romain Couillet
Walid Hachem
2
+ Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions 2015 Olivier Ledoit
Michael Wolf
2
+ PDF Chat Graph analysis of functional brain networks: practical issues in translational neuroscience 2014 Fabrizio De Vico Fallani
Jonas Richiardi
Mario Chávez
Sophie Achard
2
+ PDF Chat Eigen-Inference for Energy Estimation of Multiple Sources 2011 Romain Couillet
Jack W. Silverstein
Zhidong Bai
Mérouane Debbah
2
+ On a measure of divergence between two statistical populations defined by their probability distributions 1943 Ayan Bhattacharyya
2
+ PDF Chat Optimal estimation of a large-dimensional covariance matrix under Stein’s loss 2018 Olivier Ledoit
Michael Wolf
2
+ Divergence measures for statistical data processing—An annotated bibliography 2012 Michèle Basseville
2
+ Kernel spectral clustering of large dimensional data 2016 Romain Couillet
Florent Benaych-Georges
2
+ The Dilogarithm Function 2007 Don Zagier
2
+ Random matrix-improved estimation of covariance matrix distances 2019 Romain Couillet
Malik Tiomoko
Steeve Zozor
Éric Moisan
2
+ Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates 2008 Xavier Mestre
2
+ Fundamentals of Complex Analysis with Applications to Engineering and Science 2003 Edward B. Saff
Arthur David Snider
2
+ Optimization Algorithms on Matrix Manifolds 2007 P.-A. Absil
Robert Mahony
Rodolphe Sepulchre
2
+ Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices 1995 Jack W. Silverstein
Sang Il Choi
2
+ On the Limiting Empirical Distribution Function of the Eigenvalues of a Multivariate <i>F</i> Matrix 1988 Zhidong Bai
Yanqing Yin
P. R. Krishnaiah
2
+ PDF Chat Random matrix improved covariance estimation for a large class of metrics* 2020 Malik Tiomoko
Florent Bouchard
Guillaume Ginolhac
Romain Couillet
2
+ Fisher information distance: A geometrical reading 2014 Sueli I. R. Costa
Sandra A. Santos
João E. Strapasson
2
+ PDF Chat On the Translocation of Masses 2006 L. V. Kantorovich
2
+ PDF Chat Computational Optimal Transport 2019 Gabriel Peyré
Marco Cuturi
2
+ The Limiting Eigenvalue Distribution of a Multivariate <i>F</i> Matrix 1985 Jack W. Silverstein
2
+ Minimum variance portfolio optimization in the spiked covariance model 2015 Liusha Yang
Romain Couillet
Matthew R. McKay
1
+ Unsupervised Domain Adaptation with Residual Transfer Networks 2016 Mingsheng Long
Zhu Han
Jianmin Wang
Michael I. Jordan
1
+ BANDING SAMPLE AUTOCOVARIANCE MATRICES OF STATIONARY PROCESSES 2009 Wei Biao Wu
Mohsen Pourahmadi
1
+ PDF Chat Challenges and Opportunities in Edge Computing 2016 Blesson Varghese
Nan Wang
Sakil Barbhuiya
Peter Kilpatrick
Dimitrios S. Nikolopoulos
1
+ CLT for eigenvalue statistics of large-dimensional general Fisher matrices with applications 2017 Shurong Zheng
Zhidong Bai
Jianfeng Yao
1
+ An Overview of Multi-Task Learning in Deep Neural Networks 2017 Sebastian Ruder
1
+ PDF Chat Deep Hashing Network for Unsupervised Domain Adaptation 2017 Hemanth Venkateswara
José Eusébio
Shayok Chakraborty
Sethuraman Panchanathan
1
+ PDF Chat A Survey on Deep Transfer Learning 2018 Chuanqi Tan
Fuchun Sun
Tao Kong
Wenchang Zhang
Chao Yang
Chunfang Liu
1
+ Unsupervised and Supervised Principal Component Analysis: Tutorial. 2019 Benyamin Ghojogh
Mark Crowley
1
+ Efficient Learning of Domain-invariant Image Representations 2013 Judy Hoffman
Erik Rodner
Jeff Donahue
Trevor Darrell
Kate Saenko
1
+ PDF Chat A CLT for information-theoretic statistics of Gram random matrices with a given variance profile 2008 Walid Hachem
Philippe Loubaton
Jamal Najım
1
+ PDF Chat On the distribution of the largest eigenvalue in principal components analysis 2001 Iain M. Johnstone
1
+ PDF Chat Maximum Classifier Discrepancy for Unsupervised Domain Adaptation 2018 Kuniaki Saito
Kohei Watanabe
Yoshitaka Ushiku
Tatsuya Harada
1
+ Sparse coding for multitask and transfer learning 2012 Andreas Maurer
Massi Pontil
Bernardino Romera‐Paredes
1
+ Positive definite matrices and the S-divergence 2015 Suvrit Sra
1
+ PDF Chat Semi-supervised Multitask Learning for Sequence Labeling 2017 Marek Rei
1
+ Energy and Policy Considerations for Deep Learning in NLP 2019 Emma Strubell
Ananya Ganesh
Andrew McCallum
1
+ A convex formulation for learning task relationships in multi-task learning 2010 Yu Zhang
Dit‐Yan Yeung
1
+ Normalization: A Preprocessing Stage 2015 S. Gopal Krishna Patro
Kishore Kumar Sahu
1
+ Quantifying the Carbon Emissions of Machine Learning 2019 Alexandre Lacoste
Alexandra Sasha Luccioni
Victor Schmidt
Thomas Dandres
1
+ PDF Chat Random Matrix-Improved Estimation of the Wasserstein Distance between two Centered Gaussian Distributions 2019 Malik Tiomoko
Romain Couillet
1
+ Perturbed Laguerre Unitary Ensembles, Painlevé V and Information Theory 2013 Estelle Basor
Yang Chen
Matthew R. McKay
1
+ PDF Chat Asymptotic Bayes Risk for Gaussian Mixture in a Semi-Supervised Setting 2019 Marc Lelarge
Léo Miolane
1
+ To transfer or not to transfer 2005 Michael T. Rosenstein
1