Ricard Gavaldà

Follow

Generating author description...

All published works
Action Title Year Authors
+ Compressibility of Infinite Binary Sequences 2019 José L. Balcázar
Ricard Gavaldà
Montserrat Hermo
+ PDF Chat A new method of moments for latent variable models 2018 Matteo Ruffini
Marta Casanellas
Ricard Gavaldà
+ Generating Synthetic but Plausible Healthcare Record Datasets 2018 Laura J. Avino
Matteo Ruffini
Ricard Gavaldà
+ Clustering patients with tensor decomposition 2017 Matteo Ruffini
Ricard Gavaldà
Esther Limón
+ Clustering Patients with Tensor Decomposition 2017 Matteo Ruffini
Ricard Gavaldà
Esther Limón
+ Clustering Patients with Tensor Decomposition 2017 Matteo Ruffini
Ricard Gavaldà
Esther Limón Ramírez
+ Identifiability and Transportability in Dynamic Causal Networks 2016 Gilles Blondel
Marta Arias
Ricard Gavaldà
+ PDF Chat Identifiability and transportability in dynamic causal networks 2016 Gilles Blondel
Marta Arias
Ricard Gavaldà
+ A New Spectral Method for Latent Variable Models 2016 Matteo Ruffini
Marta Casanellas
Ricard Gavaldà
+ Identifiability and Transportability in Dynamic Causal Networks 2016 Gilles Blondel
Marta Arias
Ricard Gavaldà
+ PDF Chat Visual summary of egocentric photostreams by representative keyframes 2015 Marc Bolaños
Ricard Gavaldà
Estefanía Talavera
Xavier Giró-i-Nieto
Petia Radeva
+ Visual Summary of Egocentric Photostreams by Representative Keyframes 2015 Marc Bolaños
Ricard Gavaldà
Estefanía Talavera
Xavier Giró-i-Nieto
Petia Radeva
+ Visual Summary of Egocentric Photostreams by Representative Keyframes 2015 Marc Bolaños
Ricard Gavaldà
Estefanía Talavera
Xavier Giró-i-Nieto
Petia Radeva
+ Resource-bounded Dimension in Computational Learning Theory 2010 Ricard Gavaldà
María López-Valdés
Elvira Mayordomo
N. V. Vinodchandran
+ Generalized kolmogorov complexity in relativized separations 2005 Ricard Gavaldà
Leen Torenvliet
Osamu Watanabe
José L. Balcázar
+ PDF Chat Practical Algorithms for On-Line Sampling 1998 Carlos Domingo
Ricard Gavaldà
Osamu Watanabe
+ Practical algorithms for on-line sampling 1998 Carlos Domingo
Ricard Gavaldà
Osamu Watanabe
+ On infinite sequences (almost) as easy as pi 1994 Ricard Gavaldà
José Luis Balcázar Navarro
Montserrat Hermo
+ Kolmogorov randomnes and its applications to structural complexity theory 1992 Ricard Gavaldà
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Solving Multiclass Learning Problems via Error-Correcting Output Codes 1995 Tom Dietterich
Ghulum Bakiri
2
+ Tensor Factorization via Matrix Factorization 2015 Volodymyr Kuleshov
Arun Tejasvi Chaganty
Percy Liang
2
+ A Spectral Algorithm for Latent Dirichlet Allocation 2012 Animashree Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
2
+ A Method of Moments for Mixture Models and Hidden Markov Models 2012 Animashree Anandkumar
Daniel Hsu
Sham M. Kakade
2
+ PDF Chat The NumPy Array: A Structure for Efficient Numerical Computation 2011 Stéfan van der Walt
Steven C. Colbert
Gaël Varoquaux
2
+ Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm 1977 A. P. Dempster
N. M. Laird
Donald B. Rubin
2
+ Clustering Patients with Tensor Decomposition 2017 Matteo Ruffini
Ricard Gavaldà
Esther Limón
2
+ PDF Chat R-Clustering for Egocentric Video Segmentation 2015 Estefanía Talavera
Mariella Dimiccoli
Marc Bolaños
Maedeh Aghaei
Petia Radeva
2
+ Discovering Cyclic Causal Models by Independent Components Analysis 2012 Gustavo Lacerda
Peter Spirtes
Joseph Ramsey
Patrik O. Hoyer
2
+ Tensor decompositions for learning latent variable models 2014 Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
2
+ PDF Chat Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions 2011 Nathan Halko
Per‐Gunnar Martinsson
Joel A. Tropp
2
+ Efficient algorithms for agglomerative hierarchical clustering methods 1984 W. H. Day
Herbert Edelsbrunner
2
+ PDF Chat Gales suffice for constructive dimension 2003 John M. Hitchcock
1
+ PDF Chat Multivariate Bernoulli Mixture Models with Application to Postmortem Tissue Studies in Schizophrenia 2007 Zhuoxin Sun
Ori Rosen
Allan R. Sampson
1
+ PDF Chat On Granger causality and the effect of interventions in time series 2009 Michael Eichler
Vanessa Didelez
1
+ PDF Chat Learning mixtures of spherical gaussians 2013 Daniel Hsu
Sham M. Kakade
1
+ Tensor Decompositions and Applications 2009 Tamara G. Kolda
Brett W. Bader
1
+ A Decomposition for Three-Way Arrays 1993 Sue E. Leurgans
R. Ross
Robert Abel
1
+ Tensorial resolution: A direct trilinear decomposition 1990 Eugenio Sanchez
Bruce R. Kowalski
1
+ PDF Chat Learning Mixtures of Gaussians in High Dimensions 2015 Rong Ge
Qingqing Huang
Sham M. Kakade
1
+ A comparison of algorithms for fitting the PARAFAC model 2004 Giorgio Tomasi
Rasmus Bro
1
+ PDF Chat Two decades of applied Kolmogorov complexity: in memoriam Andrei Nikolaevich Kolmogorov 1903-87 1988 M. Li
Paul Vitányi
1
+ Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics 1977 Joseph B. Kruskal
1
+ Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition 2004 Lieven De Lathauwer
Bart De Moor
Joos Vandewalle
1
+ PDF Chat Transportability of Causal and Statistical Relations: A Formal Approach 2011 Judea Pearl
Elias Bareinboim
1
+ PDF Chat Chain Graph Models and their Causal Interpretations 2002 Steffen L. Lauritzen
Thomas S. Richardson
1
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
1
+ Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis 1970 Richard A. Harshman
1
+ PDF Chat A tutorial on spectral clustering 2007 Ulrike von Luxburg
1
+ Contrastive Learning Using Spectral Methods 2013 James Zou
Daniel Hsu
David C. Parkes
Ryan P. Adams
1
+ PDF Chat Can we believe the DAGs? A comment on the relationship between causal DAGs and mechanisms 2014 OO Aalen
Kjetil Røysland
J. M. Gran
Roger D. Kouyos
Theis Lange
1
+ A kernel two-sample test 2012 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
1
+ Perturbation theory for the singular value decomposition 1990 G. W. Stewart
1
+ Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm 2016 Prateek Jain
Chi Jin
Sham M. Kakade
Praneeth Netrapalli
Aaron Sidford
1
+ PDF Chat Semialgebraic Geometry of Nonnegative Tensor Rank 2016 Qi Yang
Pierre Comon
Lek‐Heng Lim
1
+ Tensor decomposition via joint matrix schur decomposition 2016 Nicolò Colombo
Nikos Vlassis
1
+ Tensor Decomposition for Signal Processing and Machine Learning 2017 Nicholas D. Sidiropoulos
Lieven De Lathauwer
Xiao Fu
Kejun Huang
Evangelos E. Papalexakis
Christos Faloutsos
1
+ PDF Chat Identifiability of an X-Rank Decomposition of Polynomial Maps 2017 Pierre Comon
Qi Yang
Konstantin Usevich
1
+ Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs 2017 Cristóbal Esteban
Stephanie L. Hyland
Gunnar Rätsch
1
+ Caffe: Convolutional Architecture for Fast Feature Embedding 2014 Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross Girshick
Sergio Guadarrama
Trevor Darrell
1
+ SPARTan: Scalable PARAFAC2 for Large & Sparse Data 2017 Ioakeim Perros
Evangelos E. Papalexakis
Fei Wang
Richard Vuduc
Elizabeth Searles
Michael Thompson
Jimeng Sun
1
+ A New Spectral Method for Latent Variable Models 2016 Matteo Ruffini
Marta Casanellas
Ricard Gavaldà
1
+ Causal Reasoning in Graphical Time Series Models 2012 Michael Eichler
Vanessa Didelez
1
+ Learning Why Things Change: The Difference-Based Causality Learner 2012 Mark Voortman
Denver Dash
Marek J. Drużdżel
1
+ Generalization and Equilibrium in Generative Adversarial Nets (GANs) 2017 Sanjeev Arora
Rong Ge
Yingyu Liang
Tengyu Ma
Yi Zhang
1
+ Spectral Experts for Estimating Mixtures of Linear Regressions 2013 Arun Tejasvi Chaganty
Percy Liang
1
+ Return of the Devil in the Details: Delving Deep into Convolutional Nets 2014 Ken Chatfield
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+ Identifying conditional causal effects 2004 Jin Tian
1
+ A Practical Algorithm for Topic Modeling with Provable Guarantees 2012 Sanjeev Arora
Rong Ge
Yonatan Halpern
David Mimno
Ankur Moitra
David Sontag
Yichen Wu
Michael Zhu
1
+ On the method of bounded differences 1989 Colin McDiarmid
1