Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Frank Nussbaum
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Mixed membership Gaussians
2022
Joachim Giesen
Paul Kahlmeyer
Sören Laue
Matthias Mitterreiter
Frank Nussbaum
Christoph Staudt
+
Method of Moments for Topic Models with Mixed Discrete and Continuous Features
2021
Joachim Giesen
Paul Kahlmeyer
Sören Laue
Matthias Mitterreiter
Frank Nussbaum
Christoph Staudt
Sina Zarrieß
+
Models with low-rank and group-sparse components and their recovery via convex optimization
2021
Frank Nussbaum
+
Pairwise sparse + low-rank models for variables of mixed type
2020
Frank Nussbaum
Joachim Giesen
+
Efficient Regularization Parameter Selection for Latent Variable Graphical Models via Bi-Level Optimization
2019
Joachim Giesen
Frank Nussbaum
Christopher Schneider
+
Ising Models with Latent Conditional Gaussian Variables
2019
Frank Nussbaum
Joachim Giesen
+
Ising Models with Latent Conditional Gaussian Variables
2019
Frank Nussbaum
Joachim Giesen
Common Coauthors
Coauthor
Papers Together
Joachim Giesen
6
Matthias Mitterreiter
2
Paul Kahlmeyer
2
Christoph Staudt
2
Sören Laue
2
Christopher Schneider
1
Sina Zarrieß
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Latent variable graphical model selection via convex optimization
2012
Venkat Chandrasekaran
Pablo A. Parrilo
Alan S. Willsky
3
+
PDF
Chat
On model selection consistency of regularized M-estimators
2015
Jason D. Lee
Yuekai Sun
Jonathan Taylor
2
+
A theoretical basis for the reduction of polynomials to canonical forms
1976
Bruno Buchberger
2
+
PDF
Chat
Most Tensor Problems Are NP-Hard
2013
Christopher J. Hillar
Lek‐Heng Lim
2
+
PDF
Chat
A Spectral Algorithm for Latent Dirichlet Allocation
2014
Anima Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
2
+
PDF
Chat
Learning the Structure of Mixed Graphical Models
2014
Jason D. Lee
Trevor Hastie
2
+
High-dimensional graphs and variable selection with the Lasso
2006
Nicolai Meinshausen
Peter Bühlmann
2
+
High-dimensional Ising model selection using ℓ1-regularized logistic regression
2010
Pradeep Ravikumar
Martin J. Wainwright
John Lafferty
2
+
Performance Guarantees for Regularized Maximum Entropy Density Estimation
2004
Miroslav Dudı́k
Steven J. Phillips
Robert E. Schapire
2
+
A Tensor Approach to Learning Mixed Membership Community Models
2013
Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
2
+
Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$-Constrained Quadratic Programming (Lasso)
2009
Martin J. Wainwright
2
+
PDF
Chat
Rank-Sparsity Incoherence for Matrix Decomposition
2011
Venkat Chandrasekaran
Sujay Sanghavi
Pablo A. Parrilo
Alan S. Willsky
2
+
Introduction to the non-asymptotic analysis of random matrices
2010
Roman Vershynin
2
+
Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
1977
Joseph B. Kruskal
2
+
Characterization of the subdifferential of some matrix norms
1992
G. A. Watson
2
+
Learning mixtures of spherical Gaussians: moment methods and spectral decompositions
2012
Daniel Hsu
Sham M. Kakade
2
+
PDF
Chat
High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence
2011
Pradeep Ravikumar
Martin J. Wainwright
Garvesh Raskutti
Bin Yu
1
+
PDF
Chat
Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection
2013
Shiqian Ma
Lingzhou Xue
Hui Zou
1
+
Scikit-learn: Machine Learning in Python
2012
Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
1
+
Tensor decompositions for learning latent variable models
2014
Animashree Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
1
+
Factor analysis with (mixed) observed and latent variables in the exponential family
2001
Michel Wedel
Wagner A. Kamakura
1
+
PDF
Chat
Robust principal component analysis?
2011
Emmanuel J. Candès
Xiaodong Li
Yi Ma
John Wright
1
+
PDF
Chat
Latent Variable Models for Mixed Discrete and Continuous Outcomes
1997
Mary D. Sammel
Louise Ryan
Julie Legler
1
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+
On Learning Discrete Graphical Models using Group-Sparse Regularization
2011
Ali Jalali
Pradeep Ravikumar
Vishvas Vasuki
Sujay Sanghavi
1
+
A Fused Latent and Graphical Model for Multivariate Binary Data
2016
Yunxiao Chen
Xiaoou Li
Jingchen Liu
Zhiliang Ying
1
+
Analysis of an algorithm for approximating convex bodies
1994
G. K. Kamenev
1
+
PDF
Chat
A Hierarchical Approach for Generating Descriptive Image Paragraphs
2017
Jonathan Krause
Justin Johnson
Ranjay Krishna
Li Fei-Fei
1
+
PDF
Chat
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
2017
Richard Zhang
Phillip Isola
Alexei A. Efros
1
+
PDF
Chat
Deep Clustering for Unsupervised Learning of Visual Features
2018
Mathilde Caron
Piotr Bojanowski
Armand Joulin
Matthijs Douze
1
+
PDF
Chat
Tensor Decompositions for Learning Latent Variable Models
2012
Anima Anandkumar
Rong Ge
Daniel Hsu
Sham M. Kakade
Matus Telgarsky
1
+
Ising Models with Latent Conditional Gaussian Variables
2019
Frank Nussbaum
Joachim Giesen
1
+
Efficient Regularization Parameter Selection for Latent Variable Graphical Models via Bi-Level Optimization
2019
Joachim Giesen
Frank Nussbaum
Christopher Schneider
1
+
PDF
Chat
Spectral Learning on Matrices and Tensors
2019
Majid Janzamin
Rong Ge
Jean Kossaifi
Anima Anandkumar
1
+
Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey
2020
Longlong Jing
Yingli Tian
1
+
Discussion: Latent variable graphical model selection via convex optimization
2012
Emmanuel J. Candès
Mahdi Soltanolkotabi
1
+
PDF
Chat
Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles
2009
Radosław Adamczak
Alexander E. Litvak
Alain Pajor
Nicole Tomczak-Jaegermann
1
+
PDF
Chat
Spectral Learning on Matrices and Tensors
2019
Majid Janzamin
Rong Ge
Jean Kossaifi
Anima Anandkumar
1
+
Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses
2013
Po‐Ling Loh
Martin J. Wainwright
1
+
Discussion: Latent variable graphical model selection via convex optimization
2012
Ming Yuan
1
+
Discussion: Latent variable graphical model selection via convex optimization
2012
Steffen L. Lauritzen
Nicolai Meinshausen
1
+
PDF
Chat
Exploring Simple Siamese Representation Learning
2021
Xinlei Chen
Kaiming He
1
+
PDF
Chat
High-Dimensional Mixed Graphical Models
2016
Jie Cheng
Tianxi Li
Elizaveta Levina
Ji Zhu
1
+
Method of Moments for Topic Models with Mixed Discrete and Continuous Features
2021
Joachim Giesen
Paul Kahlmeyer
Sören Laue
Matthias Mitterreiter
Frank Nussbaum
Christoph Staudt
Sina Zarrieß
1
+
Discussion: Latent variable graphical model selection via convex optimization
2012
Martin J. Wainwright
1
+
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
2015
Rong Ge
Furong Huang
Chi Jin
Yuan Yang
1
+
Tracking Approximate Solutions of Parameterized Optimization Problems over Multi-Dimensional (Hyper-)Parameter Domains
2015
Katharina Blechschmidt
Joachim Giesen
Soeren Laue
1
+
PDF
Chat
Graph Selection with GGMselect
2012
Christophe Giraud
Sylvie Huet
Nicolas Verzélen
1
+
PDF
Chat
Singular Wishart and multivariate beta distributions
2003
Muni S. Srivastava
1
+
PDF
Chat
Learning mixtures of spherical gaussians
2013
Daniel Hsu
Sham M. Kakade
1