Alex Delalande

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Computational Optimal Transport: With Applications to Data Science 2019 Gabriel Peyré
Marco Cuturi
3
+ Polar factorization and monotone rearrangement of vector‐valued functions 1991 Yann Brenier
3
+ PDF Chat Barycenters in the Wasserstein Space 2011 Martial Agueh
Guillaume Carlier
3
+ PDF Chat Entropic-Wasserstein Barycenters: PDE Characterization, Regularity, and CLT 2021 Guillaume Carlier
Katharina Eichinger
Alexey Kroshnin
2
+ PDF Chat A continuous linear optimal transport approach for pattern analysis in image datasets 2015 Soheil Kolouri
Akif Burak Tosun
John A. Ozolek
Gustavo K. Rohde
2
+ Optimal Transport for Applied Mathematicians 2015 Filippo Santambrogio
2
+ PDF Chat Linearized optimal transport for collider events 2020 Tianji Cai
Junyi Cheng
Nathaniel Craig
Katy Craig
2
+ On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation 1976 H. J. Brascamp
Élliott H. Lieb
2
+ Unsupervised Multilingual Alignment using Wasserstein Barycenter 2020 Xin Lian
Kshitij Jain
Jakub Truszkowski
Pascal Poupart
Yaoliang Yu
2
+ THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION 2001 FĂ©lix Otto
2
+ PDF Chat On the rate of convergence in Wasserstein distance of the empirical measure 2014 Nicolas Fournier
Arnaud Guillin
2
+ PDF Chat Computational Optimal Transport 2019 Gabriel Peyré
Marco Cuturi
2
+ PDF Chat Convergence of a Newton algorithm for semi-discrete optimal transport 2019 Jun Kitagawa
Quentin MĂ©rigot
Boris Thibert
2
+ On the singularities of convex functions 1992 Giovanni Alberti
Luigi Ambrosio
Piermarco Cannarsa
1
+ PDF Chat Formation of singularities for Hamilton-Jacobi equation, I 1983 Mikio Tsuji
1
+ Operateurs Maximaux Monotones - Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert 1973 Haı̈m Brezis
1
+ PDF Chat On the regularity of solutions of optimal transportation problems 2009 Grégoire Loeper
1
+ PDF Chat Iterative Bregman Projections for Regularized Transportation Problems 2015 Jean‐David Benamou
Guillaume Carlier
Marco Cuturi
Luca Nenna
Gabriel Peyré
1
+ Convex Bodies: The Brunn–Minkowski Theory 1993 Rolf Schneider
1
+ Gradient Flows: In Metric Spaces and in the Space of Probability Measures 2005 Luigi Ambrosio
Nicola Gigli
Giuseppe Savaré
1
+ PDF Chat The least action principle and the related concept of generalized flows for incompressible perfect fluids 1989 Yann Brenier
1
+ PDF Chat The Monge–Ampùre equation and its link to optimal transportation 2014 Guido De Philippis
Alessio Figalli
1
+ Learnability, Stability and Uniform Convergence 2010 Shai Shalev‐Shwartz
Ohad Shamir
Nathan Srebro
Karthik Sridharan
1
+ Distribution’s template estimate with Wasserstein metrics 2015 Emmanuel Boissard
Thibaut Le Gouic
Jean-Michel LoubĂšs
1
+ PDF Chat Logarithmically-Concave Moment Measures I 2014 Bo’az Klartag
1
+ Generalised Lagrangian Solutions for Atmospheric and Oceanic Flows 1991 M. J. P. Cullen
John W. Norbury
Robert James Purser
1
+ PDF Chat A new algorithm for the assignment problem 1981 Dimitri P. Bertsekas
1
+ The Variational Formulation of the Fokker--Planck Equation 1998 Richard W. Jordan
David Kinderlehrer
FĂ©lix Otto
1
+ PDF Chat The regularity of mappings with a convex potential 1992 Luis Caffarelli
1
+ Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications 1989 Piermarco Cannarsa
H. Meté Soner
1
+ The $\infty$-Wasserstein Distance: Local Solutions and Existence of Optimal Transport Maps 2008 Thierry Champion
Luigi De Pascale
Petri Juutinen
1
+ PDF Chat Numerical methods for matching for teams and Wasserstein barycenters 2015 Guillaume Carlier
Adam M. Oberman
Èdouard Oudet
1
+ PDF Chat A Numerical Algorithm for<i>L</i><sub>2</sub>Semi-Discrete Optimal Transport in 3D 2015 Bruno LĂ©vy
1
+ Monge-Kantorovich depth, quantiles, ranks and signs 2015 Alfred Galichon
Marc Hallin
Victor Chernozhukov
Marc Henry
1
+ Weak Convergence and Empirical Processes 1996 Aad van der Vaart
Jon A. Wellner
1
+ Learning Probability Measures with respect to Optimal Transport Metrics 2012 Guillermo D. Cañas
Lorenzo Rosasco
1
+ On Extensions of the Brunn-Minkowski and Prékopa-Leindler Theorems, Including Inequalities for Log Concave Functions, and with an Application to the Diffusion Equation 2002 H. J. Brascamp
Élliott H. Lieb
1
+ PDF Chat Existence and consistency of Wasserstein barycenters 2016 Thibaut Le Gouic
Jean-Michel LoubĂšs
1
+ Convexity of the support of the displacement interpolation: Counterexamples 2016 Filippo Santambrogio
Xu‐Jia Wang
1
+ PDF Chat On Hölder continuity-in-time of the optimal transport map towards measures along a curve 2011 Nicola Gigli
1
+ Boundary Regularity of Maps with Convex Potentials--II 1996 Luis Caffarelli
1
+ Optimal Transport for Applied Mathematicians : Calculus of Variations, PDEs, and Modeling 2015 Filippo Santambrogio
1
+ PDF Chat Brascamp–Lieb-Type Inequalities on Weighted Riemannian Manifolds with Boundary 2016 Alexander V. Kolesnikov
Emanuel Milman
1
+ Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration 2017 Jason M. Altschuler
Jonathan Weed
Philippe Rigollet
1
+ A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations 2017 Thomas Gallouët
Quentin MĂ©rigot
1
+ Multilevel Clustering via Wasserstein Means 2017 Nhat Ho
XuanLong Nguyen
Mikhail Yurochkin
Hung Bui
Viet Huynh
Dinh Phung
1
+ Fast Computation of Wasserstein Barycenters 2014 Marco Cuturi
Arnaud Doucet
1
+ Upper and lower risk bounds for estimating the Wasserstein barycenter of random measures on the real line 2018 Jérémie Bigot
RaĂșl Gouet
Thierry Klein
Alfredo Quijano-LĂłpez
1
+ High-Dimensional Probability: An Introduction with Applications in Data Science 2018 Roman Vershynin
1
+ Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape 2004 P. Thomas Fletcher
C. Lu
Stephen M. Pizer
Shantanu Joshi
1