Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Jorge Gallego
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Predicting politiciansâ misconduct: Evidence from Colombia
2022
Jorge Gallego
Mounu Prem
Juan F. Vargas
+
Preventing rather than punishing: An early warning model of malfeasance in public procurement
2020
Jorge Gallego
Gonzalo Rivero
Juan Diego SĂĄnchez MartĂnez
+
PDF
Chat
What Predicts Corruption?
2019
Emanuele Colonnelli
Jorge Gallego
Mounu Prem
Common Coauthors
Coauthor
Papers Together
Mounu Prem
2
Emanuele Colonnelli
1
Juan Diego SĂĄnchez MartĂnez
1
Juan F. Vargas
1
Gonzalo Rivero
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
High-Dimensional Methods and Inference on Structural and Treatment Effects
2014
Alexandre Belloni
Victor Chernozhukov
Christian Hansen
3
+
Regression Shrinkage and Selection Via the Lasso
1996
Robert Tibshirani
3
+
Preventing rather than punishing: An early warning model of malfeasance in public procurement
2020
Jorge Gallego
Gonzalo Rivero
Juan Diego SĂĄnchez MartĂnez
2
+
Predicting and explaining corruption across countries: A machine learning approach
2019
Marcio Salles Melo Lima
Dursun Delen
2
+
PDF
Chat
Prediction Policy Problems
2015
Jon Kleinberg
Jens Ludwig
Sendhil Mullainathan
Ziad Obermeyer
2
+
Super Learner
2007
Mark J. van der Laan
Eric C. Polley
Alan Hubbard
2
+
Predicting Public Corruption with Neural Networks: An Analysis of Spanish Provinces
2017
FĂ©lix J. LĂłpezâIturriaga
IvĂĄn Pastor Sanz
2
+
The Elements of Statistical Learning
2001
Trevor Hastie
J. Friedman
Robert Tibshirani
2
+
PDF
Chat
Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)
2000
Jerome H. Friedman
Trevor Hastie
Robert Tibshirani
2
+
PDF
Chat
The Selective Labels Problem
2017
Himabindu Lakkaraju
Jon Kleinberg
Jure Leskovec
Jens Ludwig
Sendhil Mullainathan
1
+
Techniques for Interpretable Machine Learning
2018
Mengnan Du
Ninghao Liu
Xia Hu
1
+
All Models are Wrong but many are Useful: Variable Importance for Black-Box, Proprietary, or Misspecified Prediction Models, using Model Class Reliance
2018
Aaron Fisher
Cynthia Rudin
Francesca Dominici
1
+
PDF
Chat
What Predicts Corruption?
2019
Emanuele Colonnelli
Jorge Gallego
Mounu Prem
1
+
Proceedings of the 25th international conference on Machine learning
2008
William W. Cohen
Andrew McCallum
Sam T. Roweis
1
+
Machine Learning Methods That Economists Should Know About
2019
Susan Athey
Guido W. Imbens
1
+
PDF
Chat
Program Evaluation and Causal Inference With High-Dimensional Data
2017
Alexandre Belloni
Victor Chernozhukov
I. Fernïżœndez-Val
Christian Hansen
1
+
PDF
Chat
A Survey of Methods for Explaining Black Box Models
2018
Riccardo Guidotti
Anna Monreale
Salvatore Ruggieri
Franco Turini
Fosca Giannotti
Dino Pedreschi
1
+
Learning to Explain: An Information-Theoretic Perspective on Model Interpretation
2018
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
1
+
PDF
Chat
Techniques for interpretable machine learning
2019
Mengnan Du
Ninghao Liu
Xia Hu
1
+
PDF
Chat
The Promise and Pitfalls of Conflict Prediction: Evidence from Colombia and Indonesia
2019
Samuel Bazzi
Robert Blair
Christopher Blattman
Oeindrila Dube
Matthew Gudgeon
Richard M. Peck
1
+
Regularization Paths for Generalized Linear Models via Coordinate Descent
2010
Jerome H. Friedman
Trevor Hastie
Robert Tibshirani
1
+
gbm: Generalized Boosted Regression Models
2003
Greg Ridgeway
Gbm Developers
1
+
Statistical Learning with Sparsity
2015
Trevor Hastie
Robert Tibshirani
Martin J. Wainwright
1
+
PDF
Chat
Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)
2001
Leo Breiman
1
+
Regularization Paths for Generalized Linear Models via Coordinate Descent.
2010
Jerome H. Friedman
Trevor Hastie
Rob Tibshirani
1
+
PDF
Chat
SMOTE: Synthetic Minority Over-sampling Technique
2002
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Philip Kegelmeyer
1
+
Program evaluation and causal inference with high-dimensional data
2016
Alexandre Belloni
Victor Chernozhukov
IvĂĄn FernĂĄndezâVal
Christian Hansen
1
+
Model-Agnostic Interpretability of Machine Learning
2016
Marco TĂșlio Ribeiro
Sameer Singh
Carlos Guestrin
1
+
Towards A Rigorous Science of Interpretable Machine Learning
2017
Finale DoshiâVelez
Been Kim
1
+
PDF
Chat
What Can We Learn from Predictive Modeling?
2017
Skyler Cranmer
Bruce Desmarais
1