Nathaniel Diamant

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Feedback Efficient Online Fine-Tuning of Diffusion Models 2024 Masatoshi Uehara
Yulai Zhao
Kevin Black
Ehsan Hajiramezanali
Gabriele Scalia
Nathaniel Diamant
Alex M. Tseng
Sergey Levine
Tommaso Biancalani
+ PDF Chat Fine-Tuning of Continuous-Time Diffusion Models as Entropy-Regularized Control 2024 Masatoshi Uehara
Yulai Zhao
Kevin Black
Ehsan Hajiramezanali
Gabriele Scalia
Nathaniel Diamant
Alex M. Tseng
Tommaso Biancalani
Sergey Levine
+ Improving Graph Generation by Restricting Graph Bandwidth 2023 Nathaniel Diamant
Alex M. Tseng
Kangway V. Chuang
Tommaso Biancalani
Gabriele Scalia
+ GraphGUIDE: interpretable and controllable conditional graph generation with discrete Bernoulli diffusion 2023 Alex M. Tseng
Nathaniel Diamant
Tommaso Biancalani
Gabriele Scalia
+ Complex Preferences for Different Convergent Priors in Discrete Graph Diffusion 2023 Alex M. Tseng
Nathaniel Diamant
Tommaso Biancalani
Gabriele Scalia
+ Conformalized Deep Splines for Optimal and Efficient Prediction Sets 2023 Nathaniel Diamant
Ehsan Hajiramezanali
Tommaso Biancalani
Gabriele Scalia
+ PDF Chat Patient contrastive learning: A performant, expressive, and practical approach to electrocardiogram modeling 2022 Nathaniel Diamant
Erik Reinertsen
Steven Song
Aaron D. Aguirre
Collin M. Stultz
Puneet Batra
+ Conditional Diffusion with Less Explicit Guidance via Model Predictive Control 2022 Max W. Shen
Ehsan Hajiramezanali
Gabriele Scalia
Alex Tseng
Nathaniel Diamant
Tommaso Biancalani
Andreas Loukas
+ Patient Contrastive Learning: a Performant, Expressive, and Practical Approach to ECG Modeling. 2021 Nathaniel Diamant
Erik Reinertsen
Steven Song
Aaron D. Aguirre
Collin M. Stultz
Puneet Batra
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Automatic diagnosis of the 12-lead ECG using a deep neural network 2020 Antônio H. Ribeiro
Antônio H. Ribeiro
Gabriela M. M. Paixão
Derick M. Oliveira
Paulo R. Gomes
Jéssica A. Canazart
Milton P. Ferreira
Carl R. Andersson
Peter W. Macfarlane
Wagner Meira
2
+ PDF Chat Revisiting Self-Supervised Visual Representation Learning 2019 Alexander Kolesnikov
Xiaohua Zhai
Lucas Beyer
2
+ PDF Chat Big Self-Supervised Models Advance Medical Image Classification 2021 Shekoofeh Azizi
Basil Mustafa
Fiona Ryan
Zachary Beaver
Jan Freyberg
Jonathan Deaton
Aaron Loh
Alan Karthikesalingam
Simon Kornblith
Ting Chen
2
+ PDF Chat Self-supervised Learning for Spinal MRIs 2017 Amir Jamaludin
Timor Kadir
Andrew Zisserman
1
+ Self-Supervised Learning for Spinal MRIs 2017 Amir Jamaludin
Timor Kadir
Andrew Zisserman
1
+ Network In Network 2013 Min Lin
Qiang Chen
Shuicheng Yan
1
+ A Simple Framework for Contrastive Learning of Visual Representations 2020 Ting Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
1
+ Contrastive Learning of Medical Visual Representations from Paired Images and Text 2020 Yuhao Zhang
Hang Jiang
Yasuhide Miura
Christopher D. Manning
Curtis P. Langlotz
1
+ CLOCS: Contrastive Learning of Cardiac Signals Across Space, Time, and Patients 2020 Dani Kiyasseh
Tingting Zhu
David A. Clifton
1
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
1
+ SGDR: Stochastic Gradient Descent with Warm Restarts 2016 Ilya Loshchilov
Frank Hutter
1
+ Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks 2017 Pranav Rajpurkar
Awni Hannun
Masoumeh Haghpanahi
Codie Bourn
Andrew Y. Ng
1