Gianluca Detommaso

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Multicalibration for Confidence Scoring in LLMs 2024 Gianluca Detommaso
Martín Bertrán
Riccardo Fogliato
Aaron Roth
+ PDF Chat Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems 2024 Tiangang Cui
Gianluca Detommaso
Robert Scheichl
+ Fortuna: A Library for Uncertainty Quantification in Deep Learning 2023 Gianluca Detommaso
Alberto Gasparin
Michele Donini
Matthias Seeger
Andrew Gordon Wilson
Cédric Archambeau
+ Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors 2022 Gianluca Detommaso
Alberto Gasparin
A. S. Wilson
Cédric Archambeau
+ Causal Bias Quantification for Continuous Treatment. 2021 Gianluca Detommaso
Michael Brückner
Philip Schulz
Victor Chernozhukov
+ PDF Chat HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference 2021 Jakob Kruse
Gianluca Detommaso
Ullrich Köthe
Robert Scheichl
+ Causal Bias Quantification for Continuous Treatments 2021 Gianluca Detommaso
Michael Brückner
Philip Schulz
Victor Chernozhukov
+ HINT: Hierarchical Invertible Neural Transport for General and Sequential Bayesian inference. 2019 Gianluca Detommaso
Jakob Kruse
Lynton Ardizzone
Carsten Rother
Ullrich Köthe
Robert Scheichl
+ HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference. 2019 Jakob Kruse
Gianluca Detommaso
Ullrich Köthe
Robert Scheichl
+ Stein Variational Online Changepoint Detection with Applications to Hawkes Processes and Neural Networks 2019 Gianluca Detommaso
Hanne Hoitzing
Tiangang Cui
A.S.A. Alamir
+ PDF Chat Continuous Level Monte Carlo and Sample-Adaptive Model Hierarchies 2019 Gianluca Detommaso
Tim Dodwell
Robert Scheichl
+ Multilevel Dimension-Independent Likelihood-Informed MCMC for Large-Scale Inverse Problems 2019 Tiangang Cui
Gianluca Detommaso
Robert Scheichl
+ HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference 2019 Jakob Kruse
Gianluca Detommaso
Ullrich Köthe
Robert Scheichl
+ A Stein variational Newton method 2018 Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
+ Continuous Level Monte Carlo and Sample-Adaptive Model Hierarchies 2018 Gianluca Detommaso
Tim Dodwell
Robert Scheichl
+ A Stein variational Newton method 2018 Gianluca Detommaso
Tiangang Cui
Youssef Marzouk
Alessio Spantini
Robert Scheichl
+ Continuous Level Monte Carlo and Sample-Adaptive Model Hierarchies 2018 Gianluca Detommaso
Tim Dodwell
Robert Scheichl
+ A Stein variational Newton method 2018 Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Optimal Transport: Old and New 2013 Cédric Villani
5
+ Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm 2016 Qiang Liu
Dilin Wang
4
+ Variational Inference: A Review for Statisticians 2017 David M. Blei
Alp Kucukelbir
Jon McAuliffe
4
+ Sampling via Measure Transport: An Introduction 2016 Youssef Marzouk
Tarek Moselhy
Matthew Parno
Alessio Spantini
3
+ A Stein variational Newton method 2018 Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
3
+ Markov Chain Monte Carlo in Practice 1995 Walter R. Gilks
Sylvia Richardson
David J. Spiegelhalter
3
+ PDF Chat Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients 2013 Aretha L. Teckentrup
Robert Scheichl
Michael B. Giles
Elisabeth Ullmann
2
+ PDF Chat Likelihood-informed dimension reduction for nonlinear inverse problems 2014 Tiangang Cui
J. L. Martín
Youssef Marzouk
A. Solonen
Alessio Spantini
2
+ High-dimensional integration: The quasi-Monte Carlo way 2013 Josef Dick
Frances Y. Kuo
Ian H. Sloan
2
+ PDF Chat Dimension-independent likelihood-informed MCMC 2015 Tiangang Cui
Kody J. H. Law
Youssef Marzouk
2
+ Neural Autoregressive Flows 2018 Chin-Wei Huang
David Krueger
Alexandre Lacoste
Aaron Courville
2
+ HINT: Hierarchical Invertible Neural Transport for General and Sequential Bayesian inference. 2019 Gianluca Detommaso
Jakob Kruse
Lynton Ardizzone
Carsten Rother
Ullrich Köthe
Robert Scheichl
2
+ A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion 2012 James L. Martin
Lucas C. Wilcox
Carsten Burstedde
Omar Ghattas
2
+ Approximate Bayesian Computation (ABC) in practice 2010 Katalin Csilléry
Michaël G. B. Blum
Oscar E. Gaggiotti
Olivier François
2
+ PDF Chat Inverse problems: A Bayesian perspective 2010 Andrew M. Stuart
2
+ Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients 2011 K. A. Cliffe
Michael B. Giles
Robert Scheichl
Aretha L. Teckentrup
2
+ MaCow: Masked Convolutional Generative Flow 2019 Xuezhe Ma
Xiang Kong
Shanghang Zhang
Eduard Hovy
2
+ Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems 2016 Frances Y. Kuo
Robert Scheichl
Christoph Schwab
Ian H. Sloan
Elisabeth Ullmann
2
+ Normalizing Flows for Probabilistic Modeling and Inference 2019 George Papamakarios
Eric Nalisnick
Danilo Jimenez Rezende
Shakir Mohamed
Balaji Lakshminarayanan
2
+ PDF Chat Approximation and sampling of multivariate probability distributions in the tensor train decomposition 2019 Sergey Dolgov
Karim Anaya‐Izquierdo
Colin Fox
Robert Scheichl
2
+ Guided Image Generation with Conditional Invertible Neural Networks 2019 Lynton Ardizzone
Carsten Lüth
Jakob Kruse
Carsten Rother
Ullrich Köthe
2
+ PDF Chat Multilevel Monte Carlo Path Simulation 2008 Michael B. Giles
2
+ NICE: Non-linear Independent Components Estimation 2014 Laurent Dinh
David Krueger
Yoshua Bengio
2
+ Stein Variational Gradient Descent as Gradient Flow 2017 Qiang Liu
2
+ PDF Chat A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow 2015 Tim Dodwell
C. Ketelsen
Robert Scheichl
Aretha L. Teckentrup
2
+ PDF Chat Monte Carlo Statistical Methods 2000 Hoon Kim
Christian P. Robert
George Casella
2
+ PDF Chat Normalizing Flows: An Introduction and Review of Current Methods 2020 Ivan Kobyzev
Simon J. D. Prince
Marcus A. Brubaker
2
+ Learning Social Infectivity in Sparse Low-rank Networks Using Multi-dimensional Hawkes Processes 2013 Ke Zhou
Hongyuan Zha
Le Song
1
+ Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods 2013 Julia Charrier
Robert Scheichl
Aretha L. Teckentrup
1
+ Gaussian Process Change Point Models 2010 Yunus Saatçi
R.D. Turner
Carl Edward Rasmussen
1
+ Bayesian calibration of a large‐scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm 2011 Tiangang Cui
Colin Fox
Michael J. O’Sullivan
1
+ On-line changepoint detection and parameter estimation with application to genomic data 2011 François Caron
Arnaud Doucet
Raphaël Gottardo
1
+ Bayesian Nonparametric Modeling for Causal Inference 2010 Jennifer Hill
1
+ PDF Chat On the ergodicity properties of some adaptive MCMC algorithms 2006 Christophe Andrieu
Éric Moulines
1
+ Statistical Analysis With Missing Data 1989 Maureen Lahiff
Roderick J. A. Little
Donald B. Rubin
1
+ Unbiased Estimation with Square Root Convergence for SDE Models 2015 Chang-Han Rhee
Peter W. Glynn
1
+ PDF Chat Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods 2011 Mark Girolami
Ben Calderhead
1
+ Inverse Problem Theory and Methods for Model Parameter Estimation 2005 Albert Tarantola
1
+ PDF Chat Optimal Scaling of Discrete Approximations to Langevin Diffusions 1998 Gareth O. Roberts
Jeffrey S. Rosenthal
1
+ The Propensity Score with Continuous Treatments 2004 Keisuke Hirano
Guido W. Imbens
1
+ Space-Time Point-Process Models for Earthquake Occurrences 1998 Yosihiko Ogata
1
+ A general spline representation for nonparametric and semiparametric density estimates using diffeomorphisms 2012 Ethan Anderes
Marc Coram
1
+ PDF Chat Markov Chains for Exploring Posterior Distributions 1994 Luke Tierney
1
+ PDF Chat Complexity analysis of accelerated MCMC methods for Bayesian inversion 2013 Viêt Hà Hòang
Christoph Schwab
Andrew M. Stuart
1
+ PDF Chat Multilevel Monte Carlo methods 2015 Michael B. Giles
1
+ PDF Chat The central role of the propensity score in observational studies for causal effects 1983 Paul R. Rosenbaum
Donald B. Rubin
1
+ PDF Chat Estimating Conditional Average Treatment Effects 2014 Jason Abrevaya
Yu-Chin Hsu
Robert P. Lieli
1
+ MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster 2013 Simon L. Cotter
Gareth O. Roberts
Andrew M. Stuart
David White
1
+ PDF Chat A Multilevel Monte Carlo Method for Computing Failure Probabilities 2016 Daniel Elfverson
Fredrik Hellman
Axel Målqvist
1
+ PDF Chat An Adaptive Metropolis Algorithm 2001 Heikki Haario
Eero Saksman
J. Tamminen
1