Samuel Smith

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat NTIRE 2024 Challenge on Image Super-Resolution ($\times$4): Methods and Results 2024 Zheng Chen
Zongwei Wu
Eduard Zamfir
Kai Zhang
Yulun Zhang
Radu Timofte
Xiaokang Yang
Hongyuan Yu
Cheng Wan
Yuxin Hong
+ PDF Chat RecurrentGemma: Moving Past Transformers for Efficient Open Language Models 2024 Aleksandar Botev
Soham De
Samuel Smith
Anushan Fernando
George-Cristian Muraru
Ruba Haroun
Leonard Berrada
Razvan Pascanu
Pier Giuseppe Sessa
Robert Dadashi
+ PDF Chat Gemma: Open Models Based on Gemini Research and Technology 2024 Gemma Team
Thomas Mesnard
Cassidy Hardin
Robert Dadashi
Surya Bhupatiraju
Shreya Pathak
Laurent Sifre
Morgane Rivière
Mihir Kale
Juliette Love
+ Deep Transformers without Shortcuts: Modifying Self-attention for Faithful Signal Propagation 2023 Bobby He
James Martens
Guodong Zhang
Aleksandar Botev
Andrew Brock
Samuel Smith
Yee Whye Teh
+ Differentially Private Diffusion Models Generate Useful Synthetic Images 2023 Sahra Ghalebikesabi
Leonard Berrada
Sven Gowal
Sofia Ira Ktena
Robert Stanforth
Jamie Hayes
Soham De
Samuel Smith
Olivia Wiles
Borja Balle
+ Resurrecting Recurrent Neural Networks for Long Sequences 2023 Antonio Orvieto
Samuel Smith
Albert Gu
Anushan Fernando
Çaǧlar Gülçehre
Razvan Pascanu
Soham De
+ On the Universality of Linear Recurrences Followed by Nonlinear Projections 2023 Antonio Orvieto
Soham De
Çaǧlar Gülçehre
Razvan Pascanu
Samuel Smith
+ Unlocking Accuracy and Fairness in Differentially Private Image Classification 2023 Leonard Berrada
Soham De
Judy Hanwen Shen
Jamie Hayes
Robert Stanforth
David Stutz
Pushmeet Kohli
Samuel Smith
Borja Balle
+ ConvNets Match Vision Transformers at Scale 2023 Samuel Smith
Andrew Brock
Leonard Berrada
Soham De
+ Unlocking High-Accuracy Differentially Private Image Classification through Scale 2022 Soham De
Leonard Berrada
Jamie Hayes
Samuel Smith
Borja Balle
+ A study on the plasticity of neural networks 2021 Tudor Berariu
Wojciech Marian Czarnecki
Soham De
Jörg Bornschein
Samuel Smith
Razvan Pascanu
Claudia Clopath
+ Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error. 2021 Stanislav Fort
Andrew Brock
Razvan Pascanu
Soham De
Samuel Smith
+ On the Origin of Implicit Regularization in Stochastic Gradient Descent 2021 Samuel Smith
Benoît Dherin
David G. T. Barrett
Soham De
+ PDF Chat On the Origin of Implicit Regularization in Stochastic Gradient Descent 2021 Samuel Smith
Benoît Dherin
David G. T. Barrett
Soham De
+ Characterizing signal propagation to close the performance gap in unnormalized ResNets 2021 Andrew Brock
Soham De
Samuel Smith
+ On the Origin of Implicit Regularization in Stochastic Gradient Descent 2021 Samuel Smith
Benoît Dherin
David G. T. Barrett
Soham De
+ High-Performance Large-Scale Image Recognition Without Normalization 2021 Andrew Brock
Soham De
Samuel Smith
Karen Simonyan
+ Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error 2021 Stanislav Fort
Andrew Brock
Razvan Pascanu
Soham De
Samuel Smith
+ Characterizing signal propagation to close the performance gap in unnormalized ResNets 2021 Andrew Brock
Soham De
Samuel Smith
+ BYOL works even without batch statistics. 2020 Pierre H. Richemond
Jean-Bastien Grill
Florent Altché
Corentin Tallec
Florian Strub
Andrew Brock
Samuel Smith
Soham De
Razvan Pascanu
Bilal Piot
+ Batch Normalization Biases Deep Residual Networks Towards Shallow Paths 2020 Soham De
Samuel Smith
+ Batch Normalization Biases Residual Blocks Towards the Identity Function in Deep Networks 2020 Soham De
Samuel Smith
+ On the Generalization Benefit of Noise in Stochastic Gradient Descent 2020 Samuel Smith
Erich Elsen
Soham De
+ The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study 2019 Daniel Park
Jascha Sohl‐Dickstein
Quoc V. Le
Samuel Smith
+ Stochastic natural gradient descent draws posterior samples in function space 2018 Samuel Smith
Daniel Duckworth
Semon Rezchikov
Quoc V. Le
Jascha Sohl‐Dickstein
+ Don't decay the learning rate, increase the batch size 2018 Samuel Smith
Pieter-Jan Kindermans
Chris Ying
Quoc V. Le
+ Decoding Decoders: Finding Optimal Representation Spaces for Unsupervised Similarity Tasks 2018 В. К. Железняк
Dan Busbridge
April Shen
Samuel Smith
Nils Hammerla
+ Decoding Decoders: Finding Optimal Representation Spaces for Unsupervised Similarity Tasks 2018 В. К. Железняк
Dan Busbridge
April Shen
Samuel Smith
Nils Hammerla
+ Stochastic natural gradient descent draws posterior samples in function space 2018 Samuel Smith
Daniel Duckworth
Semon Rezchikov
Quoc V. Le
Jascha Sohl‐Dickstein
+ A Bayesian Perspective on Generalization and Stochastic Gradient Descent 2017 Samuel Smith
Quoc V. Le
+ Understanding Generalization and Stochastic Gradient Descent 2017 Samuel Smith
Quoc V. Le
+ Offline bilingual word vectors, orthogonal transformations and the inverted softmax 2017 Samuel Smith
David H. P. Turban
Steven Hamblin
Nils Hammerla
+ Energy Efficient Dissociation of Excitons to Free Charges 2017 Maxim Tabachnyk
Samuel Smith
Leah R. Weiss
Aditya Sadhanala
Alex W. Chin
Richard H. Friend
Akshay Rao
+ Don't Decay the Learning Rate, Increase the Batch Size 2017 Samuel Smith
Pieter-Jan Kindermans
Chris Ying
Quoc V. Le
+ Offline bilingual word vectors, orthogonal transformations and the inverted softmax 2017 Samuel Smith
David H. P. Turban
Steven Hamblin
Nils Hammerla
+ A Bayesian Perspective on Generalization and Stochastic Gradient Descent 2017 Samuel Smith
Quoc V. Le
+ Monte Carlo Sort for unreliable human comparisons 2016 Samuel Smith
+ Monte Carlo Sort for unreliable human comparisons 2016 Samuel Smith
+ PDF Chat Phonon-assisted ultrafast charge separation in the PCBM band structure 2015 Samuel Smith
Alex W. Chin
+ Disorder in the spectral function of a qubit ensemble 2015 Samuel Smith
Alex W. Chin
+ PDF Chat Ultrafast charge separation and nongeminate electron–hole recombination in organic photovoltaics 2014 Samuel Smith
Alex W. Chin
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour 2017 Priya Goyal
Piotr Dollár
Ross Girshick
Pieter Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
11
+ Stochastic Gradient Descent as Approximate Bayesian Inference 2017 Stephan Mandt
Matthew D. Hoffman
David M. Blei
7
+ Three Factors Influencing Minima in SGD 2017 Stanisław Jastrzȩbski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
6
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
6
+ An Empirical Model of Large-Batch Training 2018 Sam McCandlish
Jared Kaplan
Dario Amodei
OpenAI Dota Team
5
+ Measuring the Effects of Data Parallelism on Neural Network Training 2018 Christopher J. Shallue
Jaehoon Lee
Joseph M. Antognini
Jascha Sohl‐Dickstein
Roy Frostig
George E. Dahl
5
+ PDF Chat Identity Mappings in Deep Residual Networks 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
4
+ PDF Chat Stochastic Gradient Descent Performs Variational Inference, Converges to Limit Cycles for Deep Networks 2018 Pratik Chaudhari
Stefano Soatto
4
+ Don't decay the learning rate, increase the batch size 2018 Samuel Smith
Pieter-Jan Kindermans
Chris Ying
Quoc V. Le
4
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
4
+ Wide Residual Networks 2016 Sergey Zagoruyko
Nikos Komodakis
4
+ PDF Chat Momentum Contrast for Unsupervised Visual Representation Learning 2020 Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross Girshick
4
+ Large Batch Training of Convolutional Networks 2017 Yang You
Igor Gitman
Boris Ginsburg
3
+ Some methods of speeding up the convergence of iteration methods 1964 B. T. Polyak
3
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
3
+ Instance Normalization: The Missing Ingredient for Fast Stylization 2016 Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
3
+ PDF Chat Deep Networks with Stochastic Depth 2016 Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
3
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
3
+ PDF Chat A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks 2019 Umut Şimşekli
Levent Sagun
Mert Gürbüzbalaban
3
+ Wide Residual Networks 2016 Sergey Zagoruyko
Nikos Komodakis
3
+ SGDR: Stochastic Gradient Descent with Warm Restarts 2016 Ilya Loshchilov
Frank Hutter
3
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
3
+ Group Normalization 2018 Yuxin Wu
Kaiming He
3
+ The Break-Even Point on Optimization Trajectories of Deep Neural Networks 2020 Stanisław Jastrzȩbski
Maciej Szymczak
Stanislav Fort
Devansh Arpit
Jacek Tabor
Kyunghyun Cho
Krzysztof J. Geras
3
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ PDF Chat CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features 2019 Sangdoo Yun
Dongyoon Han
Sanghyuk Chun
Seong Joon Oh
Youngjoon Yoo
Junsuk Choe
3
+ Stochastic modified equations and adaptive stochastic gradient algorithms 2015 Qianxiao Li
Cheng Tai
E Weinan
3
+ The Marginal Value of Adaptive Gradient Methods in Machine Learning 2017 Ashia C. Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
3
+ Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms 2017 Xiao Han
Kashif Rasul
Roland Vollgraf
3
+ Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary Artifacts 2019 Arthur Paul Jacot
Franck Gabriel
François Gaston Ged
Clément Hongler
3
+ On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima 2016 Nitish Shirish Keskar
Dheevatsa Mudigere
Jorge Nocedal
Mikhail Smelyanskiy
Ping Tang
3
+ PDF Chat Rethinking the Inception Architecture for Computer Vision 2016 Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
3
+ mixup: Beyond Empirical Risk Minimization 2017 Hongyi Zhang
Moustapha Cissé
Yann Dauphin
David López-Paz
2
+ PDF Chat Squeeze-and-Excitation Networks 2019 Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
2
+ Optimizing Neural Networks with Kronecker-factored Approximate Curvature 2015 James Martens
Roger Grosse
2
+ PDF Chat Ultrafast Charge Separation in Organic Photovoltaics Enhanced by Charge Delocalization and Vibronically Hot Exciton Dissociation 2013 Hiroyuki Tamura
Irène Burghardt
2
+ PDF Chat In-place Activated BatchNorm for Memory-Optimized Training of DNNs 2018 Samuel Rota Bulò
Lorenzo Porzi
Peter Kontschieder
2
+ Normalization Propagation: A Parametric Technique for Removing Internal Covariate Shift in Deep Networks 2016 Devansh Arpit
Yingbo Zhou
Bhargava Urala Kota
Venu Govindaraju
2
+ PDF Chat MobileNetV2: Inverted Residuals and Linear Bottlenecks 2018 Mark Sandler
Andrew Howard
Menglong Zhu
Andrey Zhmoginov
Liang-Chieh Chen
2
+ EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 2019 Mingxing Tan
Quoc V. Le
2
+ Freeze and Chaos for DNNs: an NTK view of Batch Normalization, Checkerboard and Boundary Effects. 2019 Arthur Paul Jacot
Franck Gabriel
Clément Hongler
2
+ The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study 2019 Daniel Park
Jascha Sohl‐Dickstein
Quoc V. Le
Samuel Smith
2
+ PDF Chat Bag of Tricks for Image Classification with Convolutional Neural Networks 2019 Tong He
Zhi Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
2
+ PDF Chat Aggregated Residual Transformations for Deep Neural Networks 2017 Saining Xie
Ross Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
2
+ PDF Chat The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors 2012 Artem A. Bakulin
Akshay Rao
Vlad G. Pavelyev
P. H. M. van Loosdrecht
Maxim S. Pshenichnikov
Dorota Niedziałek
Jérôme Cornil
David Beljonne
Richard H. Friend
2
+ Fixup Initialization: Residual Learning Without Normalization. 2019 Hongyi Zhang
Yann Dauphin
Tengyu Ma
2
+ Bridging Nonlinearities and Stochastic Regularizers with Gaussian Error Linear Units 2016 Dan Hendrycks
Kevin Gimpel
2
+ Gaussian Error Linear Units (GELUs) 2016 Dan Hendrycks
Kevin Gimpel
2
+ PDF Chat Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor heterojunctions 2014 Eric R. Bittner
Carlos Silva
2
+ Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 2016 Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
2