+
|
mixup: Beyond Empirical Risk Minimization
|
2017
|
Hongyi Zhang
Moustapha Cissé
Yann Dauphin
David LĂłpez-Paz
|
2
|
+
|
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
|
2019
|
Mingxing Tan
Quoc V. Le
|
2
|
+
PDF
Chat
|
On Network Design Spaces for Visual Recognition
|
2019
|
Ilija Radosavovic
Justin Johnson
Saining Xie
WanâYen Lo
Piotr DollĂĄr
|
2
|
+
PDF
Chat
|
Deep Residual Learning for Image Recognition
|
2016
|
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
|
2
|
+
PDF
Chat
|
Designing Network Design Spaces
|
2020
|
Ilija Radosavovic
Raj Prateek Kosaraju
Ross Girshick
Kaiming He
Piotr DollĂĄr
|
2
|
+
|
Very Deep Convolutional Networks for Large-Scale Image Recognition
|
2014
|
Karen Simonyan
Andrew Zisserman
|
2
|
+
|
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
|
2017
|
Priya Goyal
Piotr DollĂĄr
Ross Girshick
Pieter Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
|
2
|
+
|
AutoAugment: Learning Augmentation Policies from Data
|
2018
|
Ekin D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
|
1
|
+
|
Do CIFAR-10 Classifiers Generalize to CIFAR-10?
|
2018
|
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
|
1
|
+
|
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
|
2018
|
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix A. Wichmann
Wieland Brendel
|
1
|
+
|
Decoupled Weight Decay Regularization
|
2017
|
Ilya Loshchilov
Frank Hutter
|
1
|
+
|
MultiGrain: a unified image embedding for classes and instances
|
2019
|
Maxim Berman
Hervé Jeǔou
Andrea Vedaldi
Iasonas Kokkinos
Matthijs Douze
|
1
|
+
|
Augment your batch: better training with larger batches
|
2019
|
Elad Hoffer
Tal BenâNun
Itay Hubara
Niv Giladi
Torsten Hoefler
Daniel Soudry
|
1
|
+
|
A Systematic Framework for Natural Perturbations from Videos
|
2019
|
Vaishaal Shankar
Achal Dave
Rebecca Roelofs
Deva Ramanan
Benjamin Recht
Ludwig Schmidt
|
1
|
+
|
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
|
2019
|
Raphael Gontijo Lopes
Dong Yin
Ben Poole
Justin Gilmer
Ekin D. Cubuk
|
1
|
+
|
A Study and Comparison of Human and Deep Learning Recognition Performance Under Visual Distortions
|
2017
|
Samuel Dodge
Lina J. Karam
|
1
|
+
|
Robustness properties of Facebook's ResNeXt WSL models
|
2019
|
A. Emin Orhan
|
1
|
+
PDF
Chat
|
Non-local Neural Networks
|
2018
|
Xiaolong Wang
Ross Girshick
Abhinav Gupta
Kaiming He
|
1
|
+
|
Attention is All you Need
|
2017
|
Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Ćukasz Kaiser
Illia Polosukhin
|
1
|
+
PDF
Chat
|
Learning Deep Transformer Models for Machine Translation
|
2019
|
Qiang Wang
Bei Li
Tong Xiao
Jingbo Zhu
Changliang Li
Derek F. Wong
Lidia S. Chao
|
1
|
+
PDF
Chat
|
Exploring the Limits of Weakly Supervised Pretraining
|
2018
|
Dhruv Mahajan
Ross Girshick
Vignesh Ramanathan
Kaiming He
Manohar Paluri
Yixuan Li
Ashwin Bharambe
Laurens van der Maaten
|
1
|
+
|
Wide Residual Networks
|
2016
|
Sergey Zagoruyko
Nikos Komodakis
|
1
|
+
|
Stand-Alone Self-Attention in Vision Models
|
2019
|
Prajit Ramachandran
Niki Parmar
Ashish Vaswani
Irwan Bello
Anselm Levskaya
Jonathon Shlens
|
1
|
+
|
A Fourier Perspective on Model Robustness in Computer Vision
|
2019
|
Dong Yin
Raphael Gontijo Lopes
Jonathon Shlens
Ekin D. Cubuk
Justin Gilmer
|
1
|
+
PDF
Chat
|
CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features
|
2019
|
Sangdoo Yun
Dongyoon Han
Sanghyuk Chun
Seong Joon Oh
Youngjoon Yoo
Junsuk Choe
|
1
|
+
|
Do Image Classifiers Generalize Across Time
|
2019
|
Vaishaal Shankar
Achal Dave
Rebecca Roelofs
Deva Ramanan
Benjamin Recht
Ludwig Schmidt
|
1
|
+
PDF
Chat
|
Random Erasing Data Augmentation
|
2020
|
Zhun Zhong
Liang Zheng
Guoliang Kang
Shaozi Li
Yi Yang
|
1
|
+
|
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
|
2020
|
Jungkyu Lee
Taeryun Won
Tae Kwan Lee
Hyemin Lee
Geonmo Gu
Kiho Hong
|
1
|
+
PDF
Chat
|
ResNeSt: Split-Attention Networks
|
2022
|
Hang Zhang
Chongruo Wu
Zhongyue Zhang
Yi Zhu
Haibin Lin
Zhi Zhang
Yue Sun
Tong He
Jonas Mueller
R. Manmatha
|
1
|
+
PDF
Chat
|
Image Quality Assessment: Unifying Structure and Texture Similarity
|
2020
|
Keyan Ding
Kede Ma
Shiqi Wang
Eero P. Simoncelli
|
1
|
+
|
FBNetV3: Joint Architecture-Recipe Search using Neural Acquisition Function
|
2020
|
Xiaoliang Dai
Alvin Wan
Peizhao Zhang
Bichen Wu
Zijian He
Zhen Wei
Kan Chen
Yuandong Tian
Matthew Yu
PĂ©ter Vajda
|
1
|
+
|
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
|
2020
|
Jian Liang
Dapeng Hu
Jiashi Feng
|
1
|
+
PDF
Chat
|
Exploring Self-Attention for Image Recognition
|
2020
|
Hengshuang Zhao
Jiaya Jia
Vladlen Koltun
|
1
|
+
PDF
Chat
|
Self-Training With Noisy Student Improves ImageNet Classification
|
2020
|
Qizhe Xie
Minh-Thang Luong
Eduard Hovy
Quoc V. Le
|
1
|
+
PDF
Chat
|
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
|
2021
|
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Fengqiu Wang
Evan Dorundo
Rahul Desai
Tyler Zhu
Samyak Parajuli
Mike Guo
|
1
|
+
|
A simple way to make neural networks robust against diverse image corruptions
|
2020
|
Evgenia Rusak
Lukas Schott
R. Zimmermann
Julian Bitterwolf
Oliver Bringmann
Matthias Bethge
Wieland Brendel
|
1
|
+
PDF
Chat
|
Big Transfer (BiT): General Visual Representation Learning
|
2020
|
Alexander Kolesnikov
Lucas Beyer
Xiaohua Zhai
Joan Puigcerver
Jessica Yung
Sylvain Gelly
Neil Houlsby
|
1
|
+
|
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
|
2019
|
Yu Sun
Xiaolong Wang
Zhuang Liu
J. J. Miller
Alexei A. Efros
Moritz Hardt
|
1
|
+
|
Tent: Fully Test-time Adaptation by Entropy Minimization
|
2020
|
Dequan Wang
Evan Shelhamer
Shaoteng Liu
Bruno A. Olshausen
Trevor Darrell
|
1
|
+
PDF
Chat
|
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet
|
2021
|
Li Yuan
Yunpeng Chen
Tao Wang
Weihao Yu
Yujun Shi
Zihang Jiang
Francis E. H. Tay
Jiashi Feng
Shuicheng Yan
|
1
|
+
PDF
Chat
|
ConViT: improving vision transformers with soft convolutional inductive biases*
|
2022
|
StĂ©phane dâAscoli
Hugo Touvron
Matthew L. Leavitt
Ari S. Morcos
Giulio Biroli
Levent Sagun
|
1
|
+
|
Going deeper with Image Transformers
|
2021
|
Hugo Touvron
Matthieu Cord
Alexandre Sablayrolles
Gabriel Synnaeve
Hervé Jeǔou
|
1
|
+
|
FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining
|
2020
|
Xiaoliang Dai
Alvin Wan
Peizhao Zhang
Bichen Wu
Zijian He
Zhen Wei
Kan Chen
Yuandong Tian
Matthew Yu
PĂ©ter Vajda
|
1
|
+
PDF
Chat
|
Training data-efficient image transformers & distillation through attention
|
2021
|
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jeǔou
|
1
|
+
PDF
Chat
|
Fast and Accurate Model Scaling
|
2021
|
Piotr DollĂĄr
Mannat Singh
Ross Girshick
|
1
|
+
|
ImageNet-21K Pretraining for the Masses
|
2021
|
Tal Ridnik
Emanuel Ben-Baruch
Asaf Noy
Lihi ZelnikâManor
|
1
|
+
|
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
|
2021
|
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
Baining Guo
|
1
|
+
|
Visformer: The Vision-friendly Transformer
|
2021
|
Zhengsu Chen
Lingxi Xie
Jianwei Niu
Xuefeng Liu
Longhui Wei
Qi Tian
|
1
|
+
|
Multiscale Vision Transformers
|
2021
|
Haoqi Fan
Bo Xiong
Karttikeya Mangalam
Yanghao Li
Zhicheng Yan
Jitendra Malik
Christoph Feichtenhofer
|
1
|
+
|
Incorporating Convolution Designs into Visual Transformers
|
2021
|
Kun Yuan
Shaopeng Guo
Ziwei Liu
Aojun Zhou
Fengwei Yu
Wei Wu
|
1
|