+
PDF
Chat
|
Counterfactual Explainable Recommendation
|
2021
|
Juntao Tan
Shuyuan Xu
Yingqiang Ge
Yunqi Li
Chen Xu
Yongfeng Zhang
|
6
|
+
PDF
Chat
|
Explainable Recommendation: A Survey and New Perspectives
|
2020
|
Yongfeng Zhang
Xu Chen
|
6
|
+
PDF
Chat
|
Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning
|
2022
|
Juntao Tan
Shijie Geng
Zuohui Fu
Yingqiang Ge
Shuyuan Xu
Yunqi Li
Yongfeng Zhang
|
6
|
+
|
Causal Collaborative Filtering
|
2023
|
Shuyuan Xu
Yingqiang Ge
Yunqi Li
Zuohui Fu
Xu Chen
Yongfeng Zhang
|
5
|
+
PDF
Chat
|
PRINCE: Provider-side Interpretability with Counterfactual Explanations in Recommender Systems
|
2020
|
Azin Ghazimatin
Oana Balalau
Rishiraj Saha
Gerhard Weikum
|
5
|
+
|
Counterfactual Visual Explanations
|
2019
|
Yash Goyal
Ziyan Wu
Jan Ernst
Dhruv Batra
Devi Parikh
Stefan Lee
|
4
|
+
PDF
Chat
|
Explainable Recommendation: A Survey and New Perspectives
|
2020
|
Yongfeng Zhang
Xu Chen
|
4
|
+
|
Explainable Recommendation via Multi-Task Learning in Opinionated Text Data
|
2018
|
Nan Wang
Hongning Wang
Yiling Jia
Yue Yin
|
4
|
+
PDF
Chat
|
Personalized Prompt Learning for Explainable Recommendation
|
2023
|
Lei Li
Yongfeng Zhang
Li Chen
|
4
|
+
PDF
Chat
|
Decoding by Linear Programming
|
2005
|
Emmanuel J. Candès
Terence Tao
|
4
|
+
|
Towards Personalized Fairness based on Causal Notion
|
2021
|
Yunqi Li
Hanxiong Chen
Shuyuan Xu
Yingqiang Ge
Yongfeng Zhang
|
4
|
+
PDF
Chat
|
Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation
|
2018
|
Qingyao Ai
Vahid Azizi
Xu Chen
Yongfeng Zhang
|
4
|
+
PDF
Chat
|
Counterfactual Explanations for Neural Recommenders
|
2021
|
Khanh Hiep Tran
Azin Ghazimatin
Rishiraj Saha Roy
|
4
|
+
|
A Survey on Trustworthy Recommender Systems
|
2022
|
Yingqiang Ge
Shuchang Liu
Zuohui Fu
Juntao Tan
Zelong Li
Shuyuan Xu
Yunqi Li
Yikun Xian
Yongfeng Zhang
|
4
|
+
PDF
Chat
|
Faithfully Explainable Recommendation via Neural Logic Reasoning
|
2021
|
Yaxin Zhu
Yikun Xian
Zuohui Fu
Gerard de Melo
Yongfeng Zhang
|
4
|
+
|
Personalized Transformer for Explainable Recommendation
|
2021
|
Lei Li
Yongfeng Zhang
Li Chen
|
4
|
+
PDF
Chat
|
Self-Attentive Sequential Recommendation
|
2018
|
Wang-Cheng Kang
Julian McAuley
|
4
|
+
PDF
Chat
|
Neural Collaborative Reasoning
|
2021
|
Hanxiong Chen
Shaoyun Shi
Yunqi Li
Yongfeng Zhang
|
4
|
+
PDF
Chat
|
Causal embeddings for recommendation
|
2018
|
Stephen Bonner
Flavian Vasile
|
3
|
+
PDF
Chat
|
Towards Long-term Fairness in Recommendation
|
2021
|
Yingqiang Ge
Shuchang Liu
Ruoyuan Gao
Yikun Xian
Yunqi Li
Xiangyu Zhao
Changhua Pei
Fei Sun
Junfeng Ge
Wenwu Ou
|
3
|
+
PDF
Chat
|
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation
|
2019
|
Yikun Xian
Zuohui Fu
S. Muthukrishnan
Gerard de Melo
Yongfeng Zhang
|
3
|
+
|
Generate Natural Language Explanations for Recommendation
|
2021
|
Hanxiong Chen
Xu Chen
Shaoyun Shi
Yongfeng Zhang
|
3
|
+
|
Try This Instead: Personalized and Interpretable Substitute Recommendation
|
2020
|
Tong Chen
Hongzhi Yin
Guanhua Ye
Zi Huang
Yang Wang
Meng Wang
|
3
|
+
PDF
Chat
|
Fairness-Aware Explainable Recommendation over Knowledge Graphs
|
2020
|
Zuohui Fu
Yikun Xian
Ruoyuan Gao
Jieyu Zhao
Qiaoying Huang
Yingqiang Ge
Shuyuan Xu
Shijie Geng
Chirag Shah
Yongfeng Zhang
|
3
|
+
PDF
Chat
|
S3-Rec: Self-Supervised Learning for Sequential Recommendation with Mutual Information Maximization
|
2020
|
Kun Zhou
Hui Wang
Wayne Xin Zhao
Yutao Zhu
Sirui Wang
Fuzheng Zhang
Zhongyuan Wang
Ji-Rong Wen
|
3
|
+
|
Session-based Recommendations with Recurrent Neural Networks
|
2015
|
Balázs Hidasi
Alexandros Karatzoglou
Linas Baltrunas
Domonkos Tikk
|
3
|
+
|
BPR: Bayesian Personalized Ranking from Implicit Feedback
|
2012
|
Steffen Rendle
Christoph Freudenthaler
Zeno Gantner
Lars Schmidt-Thieme
|
3
|
+
PDF
Chat
|
Top-N Recommendation with Counterfactual User Preference Simulation
|
2021
|
Mengyue Yang
Quanyu Dai
Zhenhua Dong
Xu Chen
Xiuqiang He
Jun Wang
|
3
|
+
PDF
Chat
|
Explainable Fairness in Recommendation
|
2022
|
Yingqiang Ge
Juntao Tan
Zhu Yan
Yinglong Xia
Jiebo Luo
Shuchang Liu
Zuohui Fu
Shijie Geng
Zelong Li
Yongfeng Zhang
|
3
|
+
|
Explaining machine learning classifiers through diverse counterfactual explanations
|
2020
|
Ramaravind Kommiya Mothilal
Amit Sharma
Chenhao Tan
|
3
|
+
PDF
Chat
|
Clustering and feature selection using sparse principal component analysis
|
2008
|
Ronny Luss
Alexandre d’Aspremont
|
2
|
+
|
XGNN: Towards Model-Level Explanations of Graph Neural Networks
|
2020
|
Hao Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
|
2
|
+
PDF
Chat
|
Understanding Echo Chambers in E-commerce Recommender Systems
|
2020
|
Yingqiang Ge
Shuya Zhao
Honglu Zhou
Changhua Pei
Fei Sun
Wenwu Ou
Yongfeng Zhang
|
2
|
+
PDF
Chat
|
Stable signal recovery from incomplete and inaccurate measurements
|
2006
|
Emmanuel J. Candès
Justin Romberg
Terence Tao
|
2
|
+
PDF
Chat
|
The central role of the propensity score in observational studies for causal effects
|
1983
|
Paul R. Rosenbaum
Donald B. Rubin
|
2
|
+
PDF
Chat
|
Team Delft’s Robot Winner of the Amazon Picking Challenge 2016
|
2017
|
Carlos Hernández
Mukunda Bharatheesha
Wilson Ko
Hans Gaiser
Jethro Tan
Kanter van Deurzen
Maarten de Vries
Bas Van Mil
Jeff van Egmond
Ruben Burger
|
2
|
+
PDF
Chat
|
Revisiting Alternative Experimental Settings for Evaluating Top-N Item Recommendation Algorithms
|
2020
|
Wayne Xin Zhao
Junhua Chen
Pengfei Wang
Qi Gu
Ji-Rong Wen
|
2
|
+
|
Demystifying Contrastive Self-Supervised Learning: Invariances, Augmentations and Dataset Biases
|
2020
|
Senthil Purushwalkam
Abhinav Gupta
|
2
|
+
|
The Connection Between Popularity Bias, Calibration, and Fairness in Recommendation
|
2020
|
Himan Abdollahpouri
Masoud Mansoury
Robin Burke
Bamshad Mobasher
|
2
|
+
|
Counterfactual Explanations for Machine Learning: A Review.
|
2020
|
Sahil Verma
John P. Dickerson
Keegan Hines
|
2
|
+
PDF
Chat
|
Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding
|
2018
|
Jiaxi Tang
Ke Wang
|
2
|
+
|
Scene-level Pose Estimation for Multiple Instances of Densely Packed Objects
|
2019
|
Chaitanya Mitash
Bowen Wen
Kostas E. Bekris
Abdeslam Boularias
|
2
|
+
PDF
Chat
|
Momentum Contrast for Unsupervised Visual Representation Learning
|
2020
|
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross Girshick
|
2
|
+
PDF
Chat
|
Unbiased Recommender Learning from Missing-Not-At-Random Implicit Feedback
|
2020
|
Yuta Saito
Suguru Yaginuma
Yuta Nishino
Hayato Sakata
Kazuhide Nakata
|
2
|
+
|
Fully Convolutional Networks for Semantic Segmentation
|
2016
|
Evan Shelhamer
Jonathan Long
Trevor Darrell
|
2
|
+
PDF
Chat
|
Unsupervised learning from videos using temporal coherency deep networks
|
2018
|
Carolina Redondo-Cabrera
Roberto J. López-Sastre
|
2
|
+
PDF
Chat
|
Neural Rating Regression with Abstractive Tips Generation for Recommendation
|
2017
|
Piji Li
Zihao Wang
Zhaochun Ren
Lidong Bing
Wai Lam
|
2
|
+
PDF
Chat
|
Unsupervised Learning of Action Classes With Continuous Temporal Embedding
|
2019
|
Anna Kukleva
Hilde Kuehne
Fadime Şener
Jürgen Gall
|
2
|
+
|
Self-Supervised Learning of Video-Induced Visual Invariances
|
2019
|
Michael Tschannen
Josip Djolonga
Marvin Ritter
Aravindh Mahendran
Xiaohua Zhai
Neil Houlsby
Sylvain Gelly
Mario Lučić
|
2
|
+
PDF
Chat
|
Causal Interpretability for Machine Learning - Problems, Methods and Evaluation
|
2020
|
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
Adrienne Raglin
Huan Liu
|
2
|