Nicolas Drougard

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Offline Risk-sensitive RL with Partial Observability to Enhance Performance in Human-Robot Teaming 2024 Giorgio Angelotti
Caroline Ponzoni Carvalho Chanel
Adam H. M. Pinto
Christophe Lounis
Corentin Chauffaut
Nicolas Drougard
+ Data Augmentation Through Expert-Guided Symmetry Detection to Improve Performance in Offline Reinforcement Learning 2023 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
+ Expert-guided Symmetry Detection in Markov Decision Processes 2022 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
+ PDF Chat Exploiting Expert-guided Symmetry Detection in Markov Decision Processes 2021 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
+ Exploitation vs Caution: Risk-sensitive Policies for Offline Learning. 2021 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
+ An Offline Risk-aware Policy Selection Method for Bayesian Markov Decision Processes 2021 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
+ Data Augmentation through Expert-guided Symmetry Detection to Improve Performance in Offline Reinforcement Learning 2021 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
+ PDF Chat Offline Learning for Planning: A Summary 2020 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
+ Offline Learning for Planning: A Summary 2020 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
+ Offline Learning for Planning: A Summary 2020 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
+ One Class Splitting Criteria for Random Forests 2016 Nicolas Goix
Nicolas Drougard
Romain Brault
Maël Chiapino
+ Qualitative Possibilistic Mixed-Observable MDPs 2013 Nicolas Drougard
Florent Teichteil-Königsbuch
Jean-Loup Farges
Didier Dubois
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems 2020 Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
3
+ PDF Chat Normalizing Flows: An Introduction and Review of Current Methods 2020 Ivan Kobyzev
Simon J. D. Prince
Marcus A. Brubaker
2
+ NICE: Non-linear Independent Components Estimation 2014 Laurent Dinh
David Krueger
Yoshua Bengio
2
+ Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction 2019 Aviral Kumar
Justin Fu
Matthew Soh
George Tucker
Sergey Levine
2
+ MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning 2020 Elise van der Pol
Daniel E. Worrall
Herke van Hoof
Frans A. Oliehoek
Max Welling
2
+ Plannable Approximations to MDP Homomorphisms: Equivariance under Actions 2020 Elise van der Pol
Thomas Kipf
Frans A. Oliehoek
Max Welling
2
+ Benchmarking Batch Deep Reinforcement Learning Algorithms 2019 Scott Fujimoto
Edoardo Conti
Mohammad Ghavamzadeh
Joëlle Pineau
2
+ FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models 2018 Will Grathwohl
Ricky T. Q. Chen
Jesse Bettencourt
Ilya Sutskever
David Duvenaud
2
+ OpenAI Gym 2016 Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
2
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
1
+ PDF Chat Robust and Adaptive Planning under Model Uncertainty 2019 Apoorva Sharma
J. Michael Harrison
Matthew Tsao
Marco Pavone
1
+ Behavior Regularized Offline Reinforcement Learning 2019 Yifan Wu
George Tucker
Ofir Nachum
1
+ A possibilistic model for qualitative sequential decision problems under uncertainty in partially observable environments 1999 Régis Sabbadin
1
+ Dream to Control: Learning Behaviors by Latent Imagination 2019 Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
1
+ PDF Chat Scalable Methods for Computing State Similarity in Deterministic Markov Decision Processes 2020 Pablo Samuel Castro
1
+ D4RL: Datasets for Deep Data-Driven Reinforcement Learning 2020 Justin Fu
Aviral Kumar
Ofir Nachum
George Tucker
Sergey Levine
1
+ PDF Chat How Should a Robot Assess Risk? Towards an Axiomatic Theory of Risk in Robotics 2019 Anirudha Majumdar
Marco Pavone
1
+ MOPO: Model-based Offline Policy Optimization 2020 Tianhe Yu
Garrett Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
1
+ Conservative Q-Learning for Offline Reinforcement Learning 2020 Aviral Kumar
Aurick Zhou
George Tucker
Sergey Levine
1
+ PDF Chat Analyzing and Improving the Image Quality of StyleGAN 2020 Tero Karras
Samuli Laine
Miika Aittala
Janne Hellsten
Jaakko Lehtinen
Timo Aila
1
+ MOPO: Model-based Offline Policy Optimization 2020 Tianhe Yu
Garrett Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
1
+ Expert-guided Symmetry Detection in Markov Decision Processes 2022 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
1
+ Don't Change the Algorithm, Change the Data: Exploratory Data for Offline Reinforcement Learning 2022 Denis Yarats
David Brandfonbrener
Hao Liu
Michael Laskin
Pieter Abbeel
Alessandro Lazaric
Lerrel Pinto
1
+ Offline Learning for Planning: A Summary 2020 Giorgio Angelotti
Nicolas Drougard
Caroline Ponzoni Carvalho Chanel
1
+ Hyperparameter Selection for Offline Reinforcement Learning 2020 Tom Le Paine
Cosmin Păduraru
Andrea Michi
Çaǧlar Gülçehre
Konrad Żołna
Alexander S. Novikov
Ziyu Wang
Nando de Freitas
1
+ Masked Autoregressive Flow for Density Estimation 2017 George Papamakarios
Theo Pavlakou
Iain Murray
1
+ GenDICE: Generalized Offline Estimation of Stationary Values 2020 Ruiyi Zhang
Bo Dai
Lihong Li
Dale Schuurmans
1
+ PDF Chat A Markovian Decision Process 1957 Richard Bellman
1
+ Consistency of random forests 2015 Erwan Scornet
Gérard Biau
Jean‐Philippe Vert
1
+ Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm 2017 David Silver
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
Matthew Lai
Arthur Guez
Marc Lanctot
Laurent Sifre
Dharshan Kumaran
Thore Graepel
1
+ Model-Based Reinforcement Learning for Atari 2019 Łukasz Kaiser
Mohammad Babaeizadeh
Piotr Miłoś
Błażej Osiński
Roy H. Campbell
Konrad Czechowski
Dumitru Erhan
Chelsea Finn
Piotr Kozakowski
Sergey Levine
1
+ PDF Chat SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition 2019 Daniel Park
William Chan
Yu Zhang
Chung‐Cheng Chiu
Barret Zoph
Ekin D. Cubuk
Quoc V. Le
1
+ Way Off-Policy Batch Deep Reinforcement Learning of Implicit Human Preferences in Dialog 2019 Natasha Jaques
Asma Ghandeharioun
Judy Hanwen Shen
Craig Ferguson
Àgata Lapedriza
Noah Jones
Shixiang Gu
Rosalind W. Picard
1
+ PDF Chat Multi-agent Diverse Generative Adversarial Networks 2018 Arnab Ghosh
Viveka Kulharia
Vinay P. Namboodiri
Philip H. S. Torr
Puneet K. Dokania
1
+ Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models 2018 Kurtland Chua
Roberto Calandra
Rowan McAllister
Sergey Levine
1