Patrick Kidger

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Single-seed generation of Brownian paths and integrals for adaptive and high order SDE solvers 2024 AndraĆŸ Jelinčič
James Foster
Patrick Kidger
+ PDF Chat Optimistix: modular optimisation in JAX and Equinox 2024 Jason Rader
Terry Lyons
Patrick Kidger
+ Lineax: unified linear solves and linear least-squares in JAX and Equinox 2023 Jason Rader
Terry Lyons
Patrick Kidger
+ On Neural Differential Equations 2022 Patrick Kidger
+ Efficient and Accurate Gradients for Neural SDEs 2021 Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
+ Equinox: neural networks in JAX via callable PyTrees and filtered transformations. 2021 Patrick Kidger
Cristian Garcia
+ Efficient and Accurate Gradients for Neural SDEs 2021 Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
+ "Hey, that's not an ODE'": Faster ODE Adjoints with 12 Lines of Code 2021 Patrick Kidger
Ricky T. Q. Chen
Terry Lyons
+ Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU 2021 Patrick Kidger
Terry Lyons
+ Neural SDEs as Infinite-Dimensional GANs 2021 Patrick Kidger
James Foster
Xuechen Li
Harald Oberhauser
Terry Lyons
+ Neural Controlled Differential Equations for Online Prediction Tasks 2021 James Morrill
Patrick Kidger
Lingyi Yang
Terry Lyons
+ Equinox: neural networks in JAX via callable PyTrees and filtered transformations 2021 Patrick Kidger
Cristian Garcia
+ Efficient and Accurate Gradients for Neural SDEs 2021 Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
+ Neural SDEs as Infinite-Dimensional GANs 2021 Patrick Kidger
James Foster
Xuechen Li
Harald Oberhauser
Terry Lyons
+ "Hey, that's not an ODE": Faster ODE Adjoints via Seminorms 2020 Patrick Kidger
Ricky T. Q. Chen
Terry Lyons
+ A Generalised Signature Method for Time Series 2020 James Morrill
Adeline Fermanian
Patrick Kidger
Terry Lyons
+ A Generalised Signature Method for Time Series 2020 J.L. Morrill
Adeline Fermanian
Patrick Kidger
Terry Lyons
+ A Generalised Signature Method for Multivariate Time Series Feature Extraction 2020 James Morrill
Adeline Fermanian
Patrick Kidger
Terry Lyons
+ Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU 2020 Patrick Kidger
Terry Lyons
+ The degree-$(n+1)$ polynomials are the most difficult $C^{\,n + 1}$ functions to uniformly approximate with degree-$n$ polynomials 2020 Patrick Kidger
+ Neural Controlled Differential Equations for Irregular Time Series 2020 Patrick Kidger
James Morrill
James Foster
Terry Lyons
+ Generalised Interpretable Shapelets for Irregular Time Series 2020 Patrick Kidger
James Morrill
Terry Lyons
+ Neural Rough Differential Equations for Long Time Series 2020 James Morrill
Cristopher Salvi
Patrick Kidger
James Foster
Terry Lyons
+ "Hey, that's not an ODE": Faster ODE Adjoints via Seminorms 2020 Patrick Kidger
Tian Qi Chen
Terry Lyons
+ A Generalised Signature Method for Multivariate Time Series Feature Extraction 2020 J.L. Morrill
Adeline Fermanian
Patrick Kidger
Terry Lyons
+ Universal Approximation with Deep Narrow Networks 2019 Patrick Kidger
Terry Lyons
+ Deep Signatures 2019 Patric Bonnier
Patrick Kidger
Imanol PĂ©rez Arribas
Cristopher Salvi
Terry Lyons
+ Deep Signature Transforms 2019 Patric Bonnier
Patrick Kidger
Imanol PĂ©rez Arribas
Cristopher Salvi
Terry Lyons
+ Universal Approximation with Deep Narrow Networks 2019 Patrick Kidger
Terry Lyons
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
9
+ Kernels for sequentially ordered data 2019 Franz J. KirĂĄly
Harald Oberhauser
8
+ Learning stochastic differential equations using RNN with log signature features 2019 Shujian Liao
Terry Lyons
Weixin Yang
Hao Ni
7
+ Neural ordinary differential equations 2018 Ricky T. Q. Chen
Yulia Rubanova
Jesse Bettencourt
David Duvenaud
7
+ A Primer on the Signature Method in Machine Learning 2016 Ilya Chevyrev
Andrey Kormilitzin
6
+ Differential Equations Driven by Rough Paths 2007 Terence J. Lyons
Michael Caruana
Thierry LĂ©vy
École d'Ă©tĂ© de probabilitĂ©s de Saint-Flour
6
+ PDF Chat Differential equations driven by rough signals 1998 Terry Lyons
6
+ Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition 2018 Pete Warden
6
+ Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU 2020 Patrick Kidger
Terry Lyons
6
+ PDF Chat Uniqueness for the signature of a path of bounded variation and the reduced path group 2010 Ben Hambly
Terry Lyons
5
+ PDF Chat A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder 2018 Imanol PĂ©rez Arribas
Guy M. Goodwin
John Geddes
Terry Lyons
Kate Saunders
5
+ Embedding and learning with signatures 2019 Adeline Fermanian
5
+ Learning from the past, predicting the statistics for the future, learning an evolving system 2013 Daniel Levin
Terry Lyons
Hao Ni
5
+ Rough paths, Signatures and the modelling of functions on streams 2014 Terry Lyons
5
+ PDF Chat DeepWriterID: An End-to-End Online Text-Independent Writer Identification System 2016 Weixin Yang
Lianwen Jin
Manfei Liu
5
+ The iisignature library: efficient calculation of iterated-integral signatures and log signatures. 2018 Jeremy Reizenstein
Benjamin Graham
5
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
4
+ PDF Chat Recurrent Neural Networks for Multivariate Time Series with Missing Values 2018 Zhengping Che
Sanjay Purushotham
Kyunghyun Cho
David Sontag
Yan Liu
4
+ Application of the Signature Method to Pattern Recognition in the CEQUEL Clinical Trial 2016 Andrey Kormilitzin
Kate Saunders
Paul J. Harrison
John Geddes
Terry Lyons
4
+ Variational Gaussian Processes with Signature Covariances. 2019 Csaba TĂłth
Harald Oberhauser
4
+ Generalised Interpretable Shapelets for Irregular Time Series 2020 Patrick Kidger
James Morrill
Terry Lyons
4
+ GRU-ODE-Bayes: Continuous Modeling of Sporadically-Observed Time Series 2019 Edward De Brouwer
Jaak Simm
Ádåm Arany
Yves Moreau
3
+ PDF Chat An Optimal Polynomial Approximation of Brownian Motion 2020 James Foster
Terry Lyons
Harald Oberhauser
3
+ Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit 2019 Belinda Tzen
Maxim Raginsky
3
+ Multidimensional Stochastic Processes as Rough Paths 2010 Peter K. Friz
Nicolas Victoir
3
+ The UEA multivariate time series classification archive, 2018. 2018 Anthony Bagnall
Hoang Anh Dau
Jason Lines
Michael Flynn
James Large
Aaron Bostrom
Paul Southam
Eamonn Keogh
3
+ Generative Moment Matching Networks 2015 Yujia Li
Kevin Swersky
Rich Zemel
3
+ Neural Rough Differential Equations for Long Time Series 2020 James Morrill
Cristopher Salvi
Patrick Kidger
James Foster
Terry Lyons
3
+ Scalable Gradients and Variational Inference for Stochastic Differential Equations 2019 Xuechen Li
Ting‐Kam Leonard Wong
Ricky T. Q. Chen
David Duvenaud
3
+ Derivatives pricing using signature payoffs 2018 Imanol PĂ©rez Arribas
3
+ Dissecting Neural ODEs 2020 Stefano Massaroli
Michael Poli
Jinkyoo Park
Atsushi Yamashita
Hajime Asama
3
+ Stochastic Normalizing Flows 2020 Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
3
+ A Generalised Signature Method for Multivariate Time Series Feature Extraction 2020 James Morrill
Adeline Fermanian
Patrick Kidger
Terry Lyons
3
+ Neural Jump Stochastic Differential Equations 2019 Junteng Jia
Austin R. Benson
2
+ Scikit-learn: Machine Learning in Python 2012 FabiĂĄn Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
2
+ Free Lie Algebras 1993 Christophe Reutenauer
2
+ PDF Chat Standard Lyndon bases of Lie algebras and enveloping algebras 1995 Pierre Lalonde
Arun Ram
2
+ ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs 2019 Amir Gholaminejad
Kurt Keutzer
George Biros
2
+ The Unusual Effectiveness of Averaging in GAN Training 2018 Yasin Yazıcı
Chuan-Sheng Foo
Stefan Winkler
Kim–Hui Yap
Georgios Piliouras
Vijay Chandrasekhar
2
+ Combinatorics on words 1984 M. Lothaire
2
+ Spectral Normalization for Generative Adversarial Networks 2018 Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
2
+ PDF Chat Universal Differential Equations for Scientific Machine Learning 2020 Christopher Rackauckas
Yingbo Ma
Carl Julius Martensen
Collin Warner
Kirill Zubov
Rohit Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
2
+ Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise 2019 Xuanqing Liu
Tesi Xiao
Si Si
Cao Qin
Sanjiv Kumar
Cho‐Jui Hsieh
2
+ A kernel two-sample test 2012 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
2
+ Should we really use post-hoc tests based on mean-ranks? 2015 Alessio Benavoli
Giorgio Corani
Francesca Mangili
2
+ Dimension-free Euler estimates of rough differential equations 2013 Youness Boutaib
Lajos Gergely GyurkĂł
Terry Lyons
Danyu Yang
2
+ Interpolation-Prediction Networks for Irregularly Sampled Time Series 2019 Satya Narayan Shukla
Benjamin M. Marlin
2
+ ANODE: Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs 2019 Amir Gholami
Kurt Keutzer
George Biros
2
+ Pathwise approximation of SDEs by coupling piecewise abelian rough paths 2015 Guy Flint
Terry Lyons
2
+ Deep Signature Transforms 2019 Patric Bonnier
Patrick Kidger
Imanol PĂ©rez Arribas
Cristopher Salvi
Terry Lyons
2