Marc G. Bellemare

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Action Gaps and Advantages in Continuous-Time Distributional Reinforcement Learning 2024 Harley Wiltzer
Marc G. Bellemare
David Meger
Patrick Shafto
Yash Jhaveri
+ PDF Chat Controlling Large Language Model Agents with Entropic Activation Steering 2024 Nate Rahn
Pierluca D’Oro
Marc G. Bellemare
+ PDF Chat A Distributional Analogue to the Successor Representation 2024 Harley Wiltzer
Jesse Farebrother
Arthur Gretton
Yunhao Tang
André Barreto
Will Dabney
Marc G. Bellemare
Mark Rowland
+ An Analysis of Quantile Temporal-Difference Learning 2023 Mark Rowland
Rémi Munos
Mohammad Gheshlaghi Azar
Yunhao Tang
Georg Ostrovski
Anna Harutyunyan
Karl Tuyls
Marc G. Bellemare
Will Dabney
+ Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks 2023 Jesse Farebrother
Joshua Greaves
Rishabh Agarwal
Charline Le Lan
Ross Goroshin
Pablo Samuel Castro
Marc G. Bellemare
+ The Statistical Benefits of Quantile Temporal-Difference Learning for Value Estimation 2023 Mark Rowland
Yunhao Tang
Clare Lyle
Rémi Munos
Marc G. Bellemare
Will Dabney
+ Bootstrapped Representations in Reinforcement Learning 2023 Charline Le Lan
Stephen Tu
Mark Rowland
Anna Harutyunyan
Rishabh Agarwal
Marc G. Bellemare
Will Dabney
+ Policy Optimization in a Noisy Neighborhood: On Return Landscapes in Continuous Control 2023 Nate Rahn
Pierluca D’Oro
Harley Wiltzer
Pierre‐Luc Bacon
Marc G. Bellemare
+ Learning and Controlling Silicon Dopant Transitions in Graphene using Scanning Transmission Electron Microscopy 2023 Max Schwarzer
Jesse Farebrother
Joshua Greaves
Ekin D. Cubuk
Rishabh Agarwal
Aaron Courville
Marc G. Bellemare
Sergei V. Kalinin
Igor Mordatch
Pablo Samuel Castro
+ Small batch deep reinforcement learning 2023 Johan S. Obando-Ceron
Marc G. Bellemare
Pablo Samuel Castro
+ On the Generalization of Representations in Reinforcement Learning 2022 Charline Le Lan
Stephen Tu
Adam M. Oberman
Rishabh Agarwal
Marc G. Bellemare
+ Distributional Hamilton-Jacobi-Bellman Equations for Continuous-Time Reinforcement Learning 2022 Harley Wiltzer
David Meger
Marc G. Bellemare
+ Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress 2022 Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
+ A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces 2022 Charline Le Lan
Joshua Greaves
Jesse Farebrother
Mark Rowland
Fabián Pedregosa
Rishabh Agarwal
Marc G. Bellemare
+ The Nature of Temporal Difference Errors in Multi-step Distributional Reinforcement Learning 2022 Yunhao Tang
Mark Rowland
Rémi Munos
Bernardo Ávila Pires
Will Dabney
Marc G. Bellemare
+ Deep Reinforcement Learning at the Edge of the Statistical Precipice 2021 Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
+ Deep Reinforcement Learning at the Edge of the Statistical Precipice 2021 Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
+ PDF Chat Metrics and Continuity in Reinforcement Learning 2021 Charline Le Lan
Marc G. Bellemare
Pablo Samuel Castro
+ PDF Chat The Value-Improvement Path: Towards Better Representations for Reinforcement Learning 2021 Will Dabney
André Barreto
Mark Rowland
Robert Dadashi
John Quan
Marc G. Bellemare
David Silver
+ Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning 2021 Rishabh Agarwal
Marlos C. Machado
Pablo Samuel Castro
Marc G. Bellemare
+ Metrics and continuity in reinforcement learning 2021 Charline Le Lan
Marc G. Bellemare
Pablo Samuel Castro
+ Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning 2021 Rishabh Agarwal
Marlos C. Machado
Pablo Samuel Castro
Marc G. Bellemare
+ On Bonus-Based Exploration Methods in the Arcade Learning Environment 2021 Adrien Ali Taïga
William Fedus
Marlos C. Machado
Aaron Courville
Marc G. Bellemare
+ Deep Reinforcement Learning at the Edge of the Statistical Precipice 2021 Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
+ Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning 2021 Rishabh Agarwal
Marlos C. Machado
Pablo Samuel Castro
Marc G. Bellemare
+ Metrics and continuity in reinforcement learning 2021 Charline Le Lan
Marc G. Bellemare
Pablo Samuel Castro
+ Representations for Stable Off-Policy Reinforcement Learning 2020 Dibya Ghosh
Marc G. Bellemare
+ The Value-Improvement Path: Towards Better Representations for Reinforcement Learning. 2020 Will Dabney
André Barreto
Mark Rowland
Robert Dadashi
John Quan
Marc G. Bellemare
David Silver
+ On Bonus Based Exploration Methods In The Arcade Learning Environment 2020 Adrien Ali Taïga
William Fedus
Marlos C. Machado
Aaron Courville
Marc G. Bellemare
+ PDF Chat Count-Based Exploration with the Successor Representation 2020 Marlos C. Machado
Marc G. Bellemare
Michael Bowling
+ PDF Chat Algorithmic Improvements for Deep Reinforcement Learning Applied to Interactive Fiction 2020 Vishal Jain
William Fedus
Hugo Larochelle
Doina Precup
Marc G. Bellemare
+ A Distributional Analysis of Sampling-Based Reinforcement Learning Algorithms 2020 Philip Amortila
Doina Precup
Prakash Panangaden
Marc G. Bellemare
+ Zooming for Efficient Model-Free Reinforcement Learning in Metric Spaces 2020 Abdelaziz Touati
Adrien Ali Taïga
Marc G. Bellemare
+ On Catastrophic Interference in Atari 2600 Games 2020 William Fedus
Dibya Ghosh
John D. Martin
Marc G. Bellemare
Yoshua Bengio
Hugo Larochelle
+ Representations for Stable Off-Policy Reinforcement Learning 2020 Dibya Ghosh
Marc G. Bellemare
+ The Importance of Pessimism in Fixed-Dataset Policy Optimization 2020 Jacob Buckman
Carles Gelada
Marc G. Bellemare
+ A Distributional Analysis of Sampling-Based Reinforcement Learning Algorithms 2020 Philip Amortila
Doina Precup
Prakash Panangaden
Marc G. Bellemare
+ On Catastrophic Interference in Atari 2600 Games 2020 William Fedus
Dibya Ghosh
John D. Martin
Marc G. Bellemare
Yoshua Bengio
Hugo Larochelle
+ Zooming for Efficient Model-Free Reinforcement Learning in Metric Spaces 2020 Abdelaziz Touati
Adrien Ali Taïga
Marc G. Bellemare
+ The Value-Improvement Path: Towards Better Representations for Reinforcement Learning 2020 Will Dabney
André Sales Barreto
Mark Rowland
Robert Dadashi
John Quan
Marc G. Bellemare
David Silver
+ Algorithmic Improvements for Deep Reinforcement Learning applied to Interactive Fiction 2019 Vishal Jain
William Fedus
Hugo Larochelle
Doina Precup
Marc G. Bellemare
+ The Hanabi challenge: A new frontier for AI research 2019 Nolan Bard
Jakob Foerster
Sarath Chandar
Neil Burch
Marc Lanctot
Hai-Jing Song
Emilio Parisotto
Vincent Dumoulin
Subhodeep Moitra
Edward Hughes
+ Benchmarking Bonus-Based Exploration Methods on the Arcade Learning Environment 2019 Adrien Ali Taïga
William Fedus
Marlos C. Machado
Aaron Courville
Marc G. Bellemare
+ An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents 2019 Felipe Petroski Such
Vashisht Madhavan
Rosanne Liu
Rui Wang
Pablo Samuel Castro
Yulun Li
Jiale Zhi
Ludwig Schubert
Marc G. Bellemare
Jeff Clune
+ PDF Chat Off-Policy Deep Reinforcement Learning by Bootstrapping the Covariate Shift 2019 Carles Gelada
Marc G. Bellemare
+ PDF Chat A Comparative Analysis of Expected and Distributional Reinforcement Learning 2019 Clare Lyle
Marc G. Bellemare
Pablo Samuel Castro
+ DeepMDP: Learning Continuous Latent Space Models for Representation Learning 2019 Carles Gelada
Saurabh Kumar
Jacob Buckman
Ofir Nachum
Marc G. Bellemare
+ The Value Function Polytope in Reinforcement Learning 2019 Robert Dadashi
Adrien Ali Taïga
Nicolas Le Roux
Dale Schuurmans
Marc G. Bellemare
+ Shaping the Narrative Arc: An Information-Theoretic Approach to Collaborative Dialogue. 2019 Kory W. Mathewson
Pablo Samuel Castro
Colin Cherry
George Foster
Marc G. Bellemare
+ The Value Function Polytope in Reinforcement Learning 2019 Robert Dadashi
Adrien Ali Taïga
Nicolas Le Roux
Dale Schuurmans
Marc G. Bellemare
+ A Comparative Analysis of Expected and Distributional Reinforcement Learning 2019 Clare Lyle
Pablo Samuel Castro
Marc G. Bellemare
+ Off-Policy Deep Reinforcement Learning by Bootstrapping the Covariate Shift 2019 Carles Gelada
Marc G. Bellemare
+ A Geometric Perspective on Optimal Representations for Reinforcement Learning 2019 Marc G. Bellemare
Will Dabney
Robert Dadashi
Adrien Ali Taïga
Pablo Samuel Castro
Nicolas Le Roux
Dale Schuurmans
Tor Lattimore
Clare Lyle
+ Hyperbolic Discounting and Learning over Multiple Horizons 2019 William Fedus
Carles Gelada
Yoshua Bengio
Marc G. Bellemare
Hugo Larochelle
+ Statistics and Samples in Distributional Reinforcement Learning 2019 Mark Rowland
Robert Dadashi
Saurabh Kumar
Rémi Munos
Marc G. Bellemare
Will Dabney
+ Distributional reinforcement learning with linear function approximation 2019 Marc G. Bellemare
Nicolas Le Roux
Pablo Samuel Castro
Subhodeep Moitra
+ Algorithmic Improvements for Deep Reinforcement Learning applied to Interactive Fiction 2019 Vishal Jain
William Fedus
Hugo Larochelle
Doina Precup
Marc G. Bellemare
+ Benchmarking Bonus-Based Exploration Methods on the Arcade Learning Environment 2019 Adrien Ali Taïga
William Fedus
Marlos C. Machado
Aaron Courville
Marc G. Bellemare
+ DeepMDP: Learning Continuous Latent Space Models for Representation Learning 2019 Carles Gelada
Saurabh Kumar
Jacob Buckman
Ofir Nachum
Marc G. Bellemare
+ The Value Function Polytope in Reinforcement Learning 2019 Robert Dadashi
Adrien Ali Taïga
Nicolas Le Roux
Dale Schuurmans
Marc G. Bellemare
+ Shaping the Narrative Arc: An Information-Theoretic Approach to Collaborative Dialogue 2019 Kory W. Mathewson
Pablo Samuel Castro
Colin Cherry
George Foster
Marc G. Bellemare
+ A Comparative Analysis of Expected and Distributional Reinforcement Learning 2019 Clare Lyle
Pablo Samuel Castro
Marc G. Bellemare
+ Off-Policy Deep Reinforcement Learning by Bootstrapping the Covariate Shift 2019 Carles Gelada
Marc G. Bellemare
+ An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents 2018 Felipe Petroski Such
Vashisht Madhavan
Rosanne Liu
Rui Wang
Pablo Samuel Castro
Yulun Li
Jiale Zhi
Ludwig Schubert
Marc G. Bellemare
Jeff Clune
+ The Barbados 2018 List of Open Issues in Continual Learning. 2018 Tom Schaul
Hado van Hasselt
Joseph Modayil
Martha White
Adam White
Pierre‐Luc Bacon
Jean Harb
Shibl Mourad
Marc G. Bellemare
Doina Precup
+ Approximate Exploration through State Abstraction. 2018 Adrien Ali Taïga
Aaron Courville
Marc G. Bellemare
+ Count-Based Exploration with the Successor Representation 2018 Marlos C. Machado
Marc G. Bellemare
Michael Bowling
+ PDF Chat Distributional Reinforcement Learning With Quantile Regression 2018 Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
+ PDF Chat Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents 2018 Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
Joel Veness
Matthew Hausknecht
Michael Bowling
+ An Analysis of Categorical Distributional Reinforcement Learning 2018 Mark Rowland
Marc G. Bellemare
Will Dabney
Rémi Munos
Yee Whye Teh
+ Dopamine: A Research Framework for Deep Reinforcement Learning 2018 Pablo Samuel Castro
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Marc G. Bellemare
+ PDF Chat An Introduction to Deep Reinforcement Learning 2018 Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joëlle Pineau
+ PDF Chat An Introduction to Deep Reinforcement Learning 2018 Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joëlle Pineau
+ An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents 2018 Felipe Petroski Such
Vashisht Madhavan
Rosanne Liu
Rui Wang
Pablo Samuel Castro
Yulun Li
Jiale Zhi
Ludwig Schubert
Marc G. Bellemare
Jeff Clune
+ Approximate Exploration through State Abstraction 2018 Adrien Ali Taïga
Aaron Courville
Marc G. Bellemare
+ Count-Based Exploration with the Successor Representation 2018 Marlos C. Machado
Marc G. Bellemare
Michael Bowling
+ Distributional Reinforcement Learning With Quantile Regression 2017 Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
+ Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents 2017 Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
Joel Veness
Matthew Hausknecht
Michael Bowling
+ A Distributional Perspective on Reinforcement Learning 2017 Marc G. Bellemare
Will Dabney
Rémi Munos
+ The Reactor: A Sample-Efficient Actor-Critic Architecture 2017 Audrūnas Gruslys
Mohammad Gheshlaghi Azar
Marc G. Bellemare
Rémi Munos
+ The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning 2017 Audrūnas Gruslys
Will Dabney
Mohammad Gheshlaghi Azar
Bilal Piot
Marc G. Bellemare
Rémi Munos
+ Automated Curriculum Learning for Neural Networks 2017 Alex Graves
Marc G. Bellemare
Jacob Menick
Rémi Munos
Koray Kavukcuoglu
+ A Laplacian Framework for Option Discovery in Reinforcement Learning 2017 Marlos C. Machado
Marc G. Bellemare
Michael Bowling
+ Count-Based Exploration with Neural Density Models 2017 Georg Ostrovski
Marc G. Bellemare
Aäron van den Oord
Rémi Munos
+ The Cramer Distance as a Solution to Biased Wasserstein Gradients 2017 Marc G. Bellemare
Ivo Danihelka
Will Dabney
Shakir Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
+ A Laplacian Framework for Option Discovery in Reinforcement Learning 2017 Marlos C. Machado
Marc G. Bellemare
Michael Bowling
+ Automated Curriculum Learning for Neural Networks 2017 Alex Graves
Marc G. Bellemare
Jacob Menick
Rémi Munos
Koray Kavukcuoglu
+ A Distributional Perspective on Reinforcement Learning 2017 Marc G. Bellemare
Will Dabney
Rémi Munos
+ Distributional Reinforcement Learning with Quantile Regression 2017 Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
+ Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents 2017 Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
Joel Veness
Matthew Hausknecht
Michael Bowling
+ Safe and efficient off-policy reinforcement learning 2016 Rémi Munos
Thomas Stepleton
Anna Harutyunyan
Marc G. Bellemare
+ PDF Chat Increasing the Action Gap: New Operators for Reinforcement Learning 2016 Marc G. Bellemare
Georg Ostrovski
Arthur Guez
Philip S. Thomas
Rémi Munos
+ Q($\lambda$) with Off-Policy Corrections 2016 Anna Harutyunyan
Marc G. Bellemare
Tom Stepleton
Rémi Munos
+ Unifying Count-Based Exploration and Intrinsic Motivation 2016 Marc G. Bellemare
Sriram Srinivasan
Georg Ostrovski
Tom Schaul
David Saxton
Rémi Munos
+ PDF Chat Q($$\lambda $$) with Off-Policy Corrections 2016 Anna Harutyunyan
Marc G. Bellemare
Tom Stepleton
Rémi Munos
+ Safe and Efficient Off-Policy Reinforcement Learning 2016 Rémi Munos
Tom Stepleton
Anna Harutyunyan
Marc G. Bellemare
+ Q($λ$) with Off-Policy Corrections 2016 Anna Harutyunyan
Marc G. Bellemare
Tom Stepleton
Rémi Munos
+ Increasing the Action Gap: New Operators for Reinforcement Learning 2015 Marc G. Bellemare
Georg Ostrovski
Arthur Guez
Philip S. Thomas
Rémi Munos
+ Increasing the Action Gap: New Operators for Reinforcement Learning 2015 Marc G. Bellemare
Georg Ostrovski
Arthur Guez
Philip S. Thomas
Rémi Munos
+ Compress and Control 2014 Joel Veness
Marc G. Bellemare
Marcus Hütter
Alvin J. K. Chua
Guillaume Desjardins
+ Online Learning of k-CNF Boolean Functions 2014 Joel Veness
Marcus Hütter
Laurent Orseau
Marc G. Bellemare
+ Compress and Control 2014 Joel Veness
Marc G. Bellemare
Marcus Hütter
Alvin J. K. Chua
Guillaume Desjardins
+ PDF Chat The Arcade Learning Environment: An Evaluation Platform for General Agents 2013 Marc G. Bellemare
Yavar Naddaf
Joel Veness
Michael Bowling
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat The Arcade Learning Environment: An Evaluation Platform for General Agents 2013 Marc G. Bellemare
Yavar Naddaf
Joel Veness
Michael Bowling
33
+ Reinforcement Learning with Unsupervised Auxiliary Tasks 2016 Max Jaderberg
Volodymyr Mnih
Wojciech Marian Czarnecki
Tom Schaul
Joel Z. Leibo
David Silver
Koray Kavukcuoglu
14
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
13
+ Prioritized Experience Replay 2015 Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
11
+ Deep reinforcement learning with double Q-Learning 2016 Hado van Hasselt
Arthur Guez
David Silver
10
+ Dopamine: A Research Framework for Deep Reinforcement Learning 2018 Pablo Samuel Castro
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Marc G. Bellemare
10
+ PDF Chat Rainbow: Combining Improvements in Deep Reinforcement Learning 2018 Matteo Hessel
Joseph Modayil
Hado van Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Dan Horgan
Bilal Piot
Mohammad Gheshlaghi Azar
David Silver
9
+ PDF Chat Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents 2018 Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
Joel Veness
Matthew Hausknecht
Michael Bowling
8
+ Pixel Recurrent Neural Networks 2016 Aäron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
7
+ The Cramer Distance as a Solution to Biased Wasserstein Gradients 2017 Marc G. Bellemare
Ivo Danihelka
Will Dabney
Shakir Mohamed
Balaji Lakshminarayanan
Stephan Hoyer
Rémi Munos
7
+ IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures 2018 Lasse Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymir Mnih
Tom Ward
Yotam Doron
Vlad Firoiu
Tim Harley
Iain Dunning
7
+ Rainbow: Combining Improvements in Deep Reinforcement Learning 2017 Matteo Hessel
Joseph Modayil
Hado van Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Daniel Horgan
Bilal Piot
Mohammad Gheshlaghi Azar
David Silver
7
+ Distributional Reinforcement Learning With Quantile Regression 2017 Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
7
+ A Distributional Perspective on Reinforcement Learning 2017 Marc G. Bellemare
Will Dabney
Rémi Munos
6
+ A Distributional Perspective on Reinforcement Learning 2017 Marc G. Bellemare
Will Dabney
Rémi Munos
6
+ Prioritized Experience Replay 2015 Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
6
+ PDF Chat Increasing the Action Gap: New Operators for Reinforcement Learning 2016 Marc G. Bellemare
Georg Ostrovski
Arthur Guez
Philip S. Thomas
Rémi Munos
6
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
5
+ Evolution Strategies as a Scalable Alternative to Reinforcement Learning 2017 Tim Salimans
Jonathan Ho
Xi Chen
Ilya Sutskever
5
+ Optimal Transport: Old and New 2013 Cédric Villani
5
+ Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models 2015 Bradly C. Stadie
Sergey Levine
Pieter Abbeel
5
+ Exploration by Random Network Distillation 2018 Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
5
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
5
+ Action-Conditional Video Prediction using Deep Networks in Atari Games 2015 Junhyuk Oh
Xiaoxiao Guo
Honglak Lee
Richard L. Lewis
Satinder Singh
5
+ Massively Parallel Methods for Deep Reinforcement Learning 2015 Arun Sukumaran Nair
P. Srinivasan
Sam Blackwell
Cagdas Alcicek
Rory Fearon
Alessandro De Maria
Vedavyas Panneershelvam
Mustafa Suleyman
Charles Beattie
Stig Petersen
5
+ PDF Chat Deep Reinforcement Learning with Double Q-Learning 2016 Hado van Hasselt
Arthur Guez
David Silver
4
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
4
+ Implicit Quantile Networks for Distributional Reinforcement Learning 2018 Will Dabney
Georg Ostrovski
David Silver
Rémi Munos
4
+ Count-Based Exploration with Neural Density Models 2017 Georg Ostrovski
Marc G. Bellemare
Aäron van den Oord
Rémi Munos
4
+ Deep Reinforcement Learning That Matters 2017 Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
4
+ Dueling Network Architectures for Deep Reinforcement Learning 2015 Ziyu Wang
Tom Schaul
Matteo Hessel
Hado van Hasselt
Marc Lanctot
Nando de Freitas
4
+ Go-Explore: a New Approach for Hard-Exploration Problems 2019 Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
4
+ Representation Learning with Contrastive Predictive Coding 2018 Aäron van den Oord
Yazhe Li
Oriol Vinyals
4
+ Implicit Quantile Networks for Distributional Reinforcement Learning 2018 Will Dabney
Georg Ostrovski
David Silver
Rémi Munos
4
+ Deep Reinforcement Learning and the Deadly Triad 2018 Hado van Hasselt
Yotam Doron
Florian Strub
Matteo Hessel
Nicolas Sonnerat
Joseph Modayil
4
+ PDF Chat Distributional Reinforcement Learning With Quantile Regression 2018 Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
4
+ Domain-Independent Optimistic Initialization for Reinforcement Learning 2014 Marlos C. Machado
Sriram Srinivasan
Michael Bowling
3
+ PDF Chat PAC Bounds for Discounted MDPs 2012 Tor Lattimore
Marcus Hütter
3
+ Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control 2017 Riashat Islam
Peter Henderson
Maziar Gomrokchi
Doina Precup
3
+ Count-Based Exploration in Feature Space for Reinforcement Learning 2017 Jarryd Martin
Suraj Narayanan S.
Tom Everitt
Marcus Hütter
3
+ Curiosity-driven Exploration by Self-supervised Prediction 2017 Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
3
+ The Laplacian in RL: Learning Representations with Efficient Approximations 2018 Yifan Wu
George Tucker
Ofir Nachum
3
+ Near Optimal Behavior via Approximate State Abstraction 2017 David Abel
D Ellis Hershkowitz
Michael L. Littman
3
+ The Value Function Polytope in Reinforcement Learning 2019 Robert Dadashi
Adrien Ali Taïga
Nicolas Le Roux
Dale Schuurmans
Marc G. Bellemare
3
+ VIME: Variational Information Maximizing Exploration 2016 Rein Houthooft
Xi Chen
Yan Duan
John Schulman
Filip De Turck
Pieter Abbeel
3
+ Graying the black box: Understanding DQNs 2016 Tom Zahavy
Nir Ben Zrihem
Shie Mannor
3
+ A Comparative Analysis of Expected and Distributional Reinforcement Learning 2019 Clare Lyle
Pablo Samuel Castro
Marc G. Bellemare
3
+ FeUdal Networks for Hierarchical Reinforcement Learning 2017 Alexander Sasha Vezhnevets
Simon Osindero
Tom Schaul
Nicolas Heess
Max Jaderberg
David Silver
Koray Kavukcuoglu
3
+ Hyperbolic Discounting and Learning over Multiple Horizons 2019 William Fedus
Carles Gelada
Yoshua Bengio
Marc G. Bellemare
Hugo Larochelle
3
+ The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning 2017 Audrūnas Gruslys
Will Dabney
Mohammad Gheshlaghi Azar
Bilal Piot
Marc G. Bellemare
Rémi Munos
3