Jeremy J. Heit

Follow

Generating author description...

All published works
Action Title Year Authors
+ Abstract DP33: Under-representation of No Mismatch Patients in Large Core Trials 2025 Margy McCullough‐Hicks
Pierre Seners
Michael Mlynash
Jean‐Marc Olivot
Mirjam R. Heldner
Pasquale Mordasini
Davide Strambo
Michel Patrik
Emmanuel Carrera
Jeremy J. Heit
+ PDF Chat Milli-spinner thrombectomy 2024 Yilong Chang
Qi Li
Shuai Wu
Benjamin Pulli
Darren Samli
Paul G. Yock
Jeremy J. Heit
Ruike Renee Zhao
+ PDF Chat USE-Evaluator: Performance metrics for medical image segmentation models supervised by uncertain, small or empty reference annotations in neuroimaging 2023 Sophie Ostmeier
Brian Axelrod
Fabian Isensee
Jeroen Bertels
Michael Mlynash
Søren Christensen
Maarten G. Lansberg
Gregory W. Albers
Rajen Sheth
Benjamin F.J. Verhaaren
+ Random Expert Sampling for Deep Learning Segmentation of Acute Ischemic Stroke on Non-contrast CT 2023 Sophie Ostmeier
Brian Axelrod
Benjamin Pulli
Benjamin F.J. Verhaaren
Abdelkader Mahammedi
Yongkai Liu
Christian Federau
Greg Zaharchuk
Jeremy J. Heit
+ USE-Evaluator: Performance Metrics for Medical Image Segmentation Models with Uncertain, Small or Empty Reference Annotations 2022 Sophie Ostmeier
Brian Axelrod
Jeroen Bertels
Fabian Isensee
Maarten G. Lansberg
Søren Christensen
Gregory W. Albers
Li-Jia Li
Jeremy J. Heit
+ Non-inferiority of Deep Learning Acute Ischemic Stroke Segmentation on Non-Contrast CT Compared to Expert Neuroradiologists 2022 Sophie Ostmeier
Brian Axelrod
Benjamin F.J. Verhaaren
Hanne Christensen
Abdelkader Mahammedi
Yongkai Liu
Benjamin Pulli
Li-Jia Li
Greg Zaharchuk
Jeremy J. Heit
+ Diffusion-Weighted Magnetic Resonance Brain Images Generation with Generative Adversarial Networks and Variational Autoencoders: A Comparison Study 2020 Alejandro UngrĂ­a Hirte
Moritz Platscher
T. A. Joyce
Jeremy J. Heit
Eric Tranvinh
Christian Federau
+ Current Clinical State of Advanced Magnetic Resonance Imaging for Brain Tumor Diagnosis and Follow Up 2017 Michael Iv
Byung Chul Yoon
Jeremy J. Heit
Nancy J. Fischbein
Max Wintermark
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
1
+ PDF Chat Generative Adversarial Networks 2022 Ian J. Goodfellow
Jean Pouget-Abadie
Mehdi Mirza
Bing Xu
David Warde-Farley
Sherjil Ozair
Aaron Courville
Yoshua Bengio
1
+ Interrater reliability: the kappa statistic. 2012 Mary L. McHugh
1
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ Tutorial on Variational Autoencoders 2016 Carl Doersch
1
+ PDF Chat Deep Feature Consistent Variational Autoencoder 2017 Xianxu Hou
Linlin Shen
Ke Sun
Guoping Qiu
1
+ NIPS 2016 Tutorial: Generative Adversarial Networks 2017 Ian Goodfellow
1
+ Towards Deeper Understanding of Variational Autoencoding Models 2017 Shengjia Zhao
Jiaming Song
Stefano Ermon
1
+ PDF Chat Generative Adversarial Networks: An Overview 2018 Antonia Creswell
Tom White
Vincent Dumoulin
Kai Arulkumaran
Biswa Sengupta
Anil A. Bharath
1
+ Data Augmentation Generative Adversarial Networks 2017 Antreas Antoniou
Amos Storkey
Harrison Edwards
1
+ PDF Chat Learning implicit brain MRI manifolds with deep learning 2018 Andrew J. Plassard
L. Taylor Davis
Allen T. Newton
Susan M. Resnick
Bennett A. Landman
Camilo Bermudez
1
+ Deep learning in radiology: an overview of the concepts and a survey of the state of the art 2018 Maciej A. Mazurowski
Mateusz Buda
Ashirbani Saha
Mustafa R. Bashir
1
+ PDF Chat GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification 2018 Maayan Frid-Adar
Idit Diamant
Eyal Klang
Michal Marianne Amitai
Jacob Goldberger
Hayit Greenspan
1
+ IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis 2018 Huaibo Huang
zhihang li
Ran He
Zhenan Sun
Tieniu Tan
1
+ Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy 2018 Stanislav Nikolov
Sam Blackwell
Alexei Zverovitch
R. Mendes
Michelle Livne
Jeffrey De Fauw
Yojan Patel
Clemens Meyer
Harry Askham
Bernardino Romera‐Paredes
1
+ Large Scale GAN Training for High Fidelity Natural Image Synthesis 2018 Andrew Brock
Jeff Donahue
Karen Simonyan
1
+ GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks 2018 Christopher Bowles
Liang Chen
Ricardo Guerrero
Paul Bentley
Roger N. Gunn
Alexander Hammers
David Alexander Dickie
MarĂ­a del C. ValdĂŠs HernĂĄndez
Joanna M. Wardlaw
Daniel Rueckert
1
+ Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge 2018 Spyridon Bakas
Mauricio Reyes
Enzo Battistella
Siddhartha Chandra
Huiguang He
Lucas Fidon
Maria Vakalopoulou
Roger Sun
et al.
Éric Deutsch
1
+ From GAN to WGAN 2019 Lilian Weng
1
+ Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge 2019 Hugo J. Kuijf
AdriĂ  Casamitjana
D. Louis Collins
Mahsa Dadar
Achilleas Georgiou
Mohsen Ghafoorian
Dakai Jin
April Khademi
Jesse Knight
Hongwei Li
1
+ PDF Chat A Style-Based Generator Architecture for Generative Adversarial Networks 2019 Tero Karras
Samuli Laine
Timo Aila
1
+ VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning 2017 Akash Srivastava
Lazar Valkov
Chris Russell
Michael U. Gutmann
Charles Sutton
1
+ Improved Techniques for Training GANs 2016 Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
1
+ GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium 2017 Martin Heusel
Hubert Ramsauer
Thomas Unterthiner
Bernhard Nessler
Sepp Hochreiter
1
+ PDF Chat On Stabilizing Generative Adversarial Training With Noise 2019 Simon Jenni
Paolo Favaro
1
+ PDF Chat Automated brain extraction of multisequence MRI using artificial neural networks 2019 Fabian Isensee
Marianne Schell
Irada Pflueger
Gianluca Brugnara
David Bonekamp
Ulf Neuberger
Antje Wick
Heinz‐Peter Schlemmer
Sabine Heiland
Wolfgang Wick
1
+ PDF Chat Effectively Unbiased FID and Inception Score and Where to Find Them 2020 Min Jin Chong
David Forsyth
1
+ PDF Chat Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis 2020 Davood Karimi
Haoran Dou
Simon K. Warfield
Ali Gholipour
1
+ PDF Chat nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation 2020 Fabian Isensee
Paul F. Jaeger
Simon Kohl
Jens Petersen
Klaus H. Maier‐Hein
1
+ PDF Chat Automatic cerebral vessel extraction in TOF-MRA using deep learning 2021 Vera de Vos
Kimberley M. Timmins
Irene van der Schaaf
Ynte M. Ruigrok
Birgitta K. Velthuis
Hugo J. Kuijf
1
+ PDF Chat Boundary IoU: Improving Object-Centric Image Segmentation Evaluation 2021 Bowen Cheng
Ross Girshick
Piotr DollĂĄr
Alexander C. Berg
Alexander Kirillov
1
+ PDF Chat QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation – Analysis of Ranking Scores and Benchmarking Results 2022 Raghav Mehta
Angelos Filos
Ujjwal Baid
Chiharu Sako
Richard McKinley
Michael Rebsamen
Katrin Dätwyler
Raphael Meier
Piotr Radojewski
Gowtham Krishnan Murugesan
1