Guo-ping Yang

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
Shuyou Zhang 2
Jiali Zhou 2
Jianrong Tan 1
Min Wu 1
Commonly Cited References
Action Title Year Authors # of times referenced
+ Introduction to number theory 2009 Luo Hua
1
+ A new convergence theorem for the inexact Newton methods based on assumptions involving the second Fréchet derivative 1999 Ioannis K. Argyros
1
+ A kantorovich-type theorem for inexact newton methods 1989 Igor Moret
1
+ Convergence behaviour of inexact Newton methods 1999 Benedetta Morini
1
+ Affine invariant convergence results for Newton's method 1982 Tjalling Ypma
1
+ Mysovskii-type theorem for the Secant method under Hölder continuous Fréchet derivative 2005 Hongmin Ren
Qingbiao Wu
1
+ Local Convergence of Inexact Newton Methods 1984 Tjalling Ypma
1
+ Convergence behaviour of inexact Newton methods under weak Lipschitz condition 2005 Jinhai Chen
Weiguo Li
1
+ The numerical solution of large systems of stiff IVPs for ODEs 1996 Kenneth R. Jackson
1
+ PDF Chat Globally Convergent Inexact Newton Methods 1994 Stanley C. Eisenstat
Homer F. Walker
1
+ Inexact Newton methods for solving nonsmooth equations 1995 J. M. Martı́nez
Liqun Qi
1
+ Iterative Solution of Nonlinear Equations in Several Variables 2000 J. M. Ortega
Werner C. Rheinboldt
1
+ Inexact Newton Methods 1982 Ron S. Dembo
Stanley C. Eisenstat
Trond Steihaug
1
+ Affine Invariant Convergence Theorems for Newton’s Method and Extensions to Related Methods 1979 Peter Deuflhard
Gerhard Heindl
1
+ A Globally Convergent Inexact Newton Method for Systems of Monotone Equations 1998 Michael V. Solodov
Benav F. Svaiter
1
+ Introduction to Algorithms 1991 V. J. Rayward‐Smith
Thomas H. Cormen
Charles E. Leiserson
Ronald L. Rivest
1
+ PDF Chat Stationary subdivision 1991 A. S. Cavaretta
Wolfgang Dahmen
Charles A. Micchelli
1
+ Iterative Solution of Nonlinear Equations in Several Variables 1970 1
+ Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods 1999 Masao Fukushima
Liqun Qi
1