+
|
Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma
|
2024
|
Aristeidis Papargyriou
Mulham Najajreh
David P. Cook
Carlo H. Maurer
Stefanie Bärthel
Hendrik A. Messal
S. Ravichandran
Till Richter
Moritz Knolle
Thomas J. Metzler
|
+
PDF
Chat
|
Improved Localized Machine Unlearning Through the Lens of Memorization
|
2024
|
Reihaneh Torkzadehmahani
Reza Nasirigerdeh
Georgios Kaissis
Daniel Rueckert
Gintare Karolina Dziugaite
Eleni Triantafillou
|
+
PDF
Chat
|
Differentially Private Active Learning: Balancing Effective Data
Selection and Privacy
|
2024
|
Kristian Schwethelm
Johannes Kaiser
Jonas Kuntzer
Mehmet Yiğitsoy
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
Enhancing the Utility of Privacy-Preserving Cancer Classification using
Synthetic Data
|
2024
|
Richard Osuala
Daniel M. Lang
Anneliese Riess
Georgios Kaissis
Zuzanna Szafranowska
Grzegorz Skorupko
Oliver Díaz
Julia A. Schnabel
Karim Lekadir
|
+
PDF
Chat
|
Machine Unlearning for Medical Imaging
|
2024
|
Reza Nasirigerdeh
Nader Razmi
Julia Schnabel
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
Attack-Aware Noise Calibration for Differential Privacy
|
2024
|
Bogdan Kulynych
Juan Felipe Gomez
Georgios Kaissis
Flávio P. Calmon
Carmela Troncoso
|
+
PDF
Chat
|
Beyond the Calibration Point: Mechanism Comparison in Differential
Privacy
|
2024
|
Georgios Kaissis
Stefan Kolek
Borja Balle
Jamie Hayes
Daniel Rueckert
|
+
PDF
Chat
|
Incentivising the federation: gradient-based metrics for data selection and valuation in private decentralised training
|
2024
|
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
ChEX: Interactive Localization and Region Description in Chest X-rays
|
2024
|
Philip C. Müller
Georgios Kaissis
Daniel Rueckert
|
+
PDF
Chat
|
Visual Privacy Auditing with Diffusion Models
|
2024
|
Kristian Schwethelm
Johannes Kaiser
Moritz Knolle
Daniel Rueckert
Georgios Kaissis
Alexander Ziller
|
+
PDF
Chat
|
Cross-domain and Cross-dimension Learning for Image-to-Graph
Transformers
|
2024
|
Alexander H. Berger
Laurin Lux
Suprosanna Shit
Ivan Ezhov
Georgios Kaissis
Martin J. Menten
Daniel Rueckert
Johannes C. Paetzold
|
+
PDF
Chat
|
Bounding Reconstruction Attack Success of Adversaries Without Data
Priors
|
2024
|
Alexander Ziller
Anneliese Riess
Kristian Schwethelm
Tamara T. Mueller
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
Weakly Supervised Object Detection in Chest X-Rays with Differentiable
ROI Proposal Networks and Soft ROI Pooling
|
2024
|
Philip C. Müller
Felix Meissen
Georgios Kaissis
Daniel Rueckert
|
+
PDF
Chat
|
(Predictable) performance bias in unsupervised anomaly detection
|
2024
|
Felix Meissen
Svenja Breuer
Moritz Knolle
Alena Buyx
Ruth Müller
Georgios Kaissis
Benedikt Wiestler
Daniel Rückert
|
+
|
Weakly Supervised Object Detection in Chest X-Rays with Differentiable ROI Proposal Networks and Soft ROI Pooling
|
2024
|
Philip Müller
Felix Meissen
Georgios Kaissis
Daniel Rueckert
|
+
|
Securing Collaborative Medical AI by Using Differential Privacy: Domain Transfer for Classification of Chest Radiographs
|
2023
|
Soroosh Tayebi Arasteh
Mahshad Lotfinia
Teresa Nolte
Marwin-Jonathan Sähn
Peter Isfort
Christiane Kühl
Sven Nebelung
Georgios Kaissis
Daniel Truhn
|
+
PDF
Chat
|
Membership Inference Attacks Against Semantic Segmentation Models
|
2023
|
Tomáš Chobola
Dmitrii Usynin
Georgios Kaissis
|
+
PDF
Chat
|
Equivariant Differentially Private Deep Learning: Why DP-SGD Needs Sparser Models
|
2023
|
Florian A. Hölzl
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
Unsupervised Pathology Detection: A Deep Dive Into the State of the Art
|
2023
|
Ioannis Lagogiannis
Felix Meissen
Georgios Kaissis
Daniel Rueckert
|
+
|
Beyond Gradients: Exploiting Adversarial Priors in Model Inversion Attacks
|
2023
|
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
Exploiting Segmentation Labels and Representation Learning to Forecast Therapy Response of PDAC Patients
|
2023
|
Alexander Ziller
Ayhan Can Erdur
Friederike Jungmann
Daniel Rueckert
Rickmer Braren
Georgios Kaissis
|
+
PDF
Chat
|
Kernel Normalized Convolutional Networks for Privacy-Preserving Machine Learning
|
2023
|
Reza Nasirigerdeh
Javad Torkzadehmahani
Daniel Rueckert
Georgios Kaissis
|
+
|
Equivariant Differentially Private Deep Learning: Why DP-SGD Needs Sparser Models
|
2023
|
Florian A. Hölzl
Daniel Rueckert
Georgios Kaissis
|
+
|
Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging
|
2023
|
Soroosh Tayebi Arasteh
Alexander Ziller
Christiane Kühl
Marcus R. Makowski
Sven Nebelung
Rickmer Braren
Daniel Rueckert
Daniel Truhn
Georgios Kaissis
|
+
|
Unsupervised Pathology Detection: A Deep Dive Into the State of the Art
|
2023
|
Ioannis Lagogiannis
Felix Meissen
Georgios Kaissis
Daniel Rueckert
|
+
|
Robust Detection Outcome: A Metric for Pathology Detection in Medical Images
|
2023
|
Felix Meissen
Philip C. Müller
Georgios Kaissis
Daniel Rueckert
|
+
|
Interactive and Explainable Region-guided Radiology Report Generation
|
2023
|
Tim Tanida
Philip C. Müller
Georgios Kaissis
Daniel Rueckert
|
+
|
Leveraging gradient-derived metrics for data selection and valuation in differentially private training
|
2023
|
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
|
+
|
Preserving privacy in domain transfer of medical AI models comes at no performance costs: The integral role of differential privacy
|
2023
|
Soroosh Tayebi Arasteh
Mahshad Lotfinia
Teresa Nolte
Marwin Saehn
Peter Isfort
Christiane Kühl
Sven Nebelung
Georgios Kaissis
Daniel Truhn
|
+
|
Bounding data reconstruction attacks with the hypothesis testing interpretation of differential privacy
|
2023
|
Georgios Kaissis
Jamie Hayes
Alexander Ziller
Daniel Rueckert
|
+
|
Privacy-Utility Trade-offs in Neural Networks for Medical Population Graphs: Insights from Differential Privacy and Graph Structure
|
2023
|
Tamara T. Mueller
Maulik Chevli
Ameya Daigavane
Daniel Rueckert
Georgios Kaissis
|
+
|
Interpretable 2D Vision Models for 3D Medical Images
|
2023
|
Alexander Ziller
Alp Güvenir
Ayhan Can Erdur
Tamara T. Mueller
Philip Müller
Friederike Jungmann
Johannes Brandt
Jan C. Peeken
Rickmer Braren
Daniel Rueckert
|
+
PDF
Chat
|
Unsupervised Anomaly Localization with Structural Feature-Autoencoders
|
2023
|
Felix Meissen
Johannes C. Paetzold
Georgios Kaissis
Daniel Rueckert
|
+
|
Extended Graph Assessment Metrics for Graph Neural Networks
|
2023
|
Tamara T. Mueller
Sophie Starck
Leonhard Feiner
Kyriaki-Margarita Bintsi
Daniel Rueckert
Georgios Kaissis
|
+
|
Body Fat Estimation from Surface Meshes using Graph Neural Networks
|
2023
|
Tamara T. Mueller
Siyu Zhou
Sophie Starck
Friederike Jungmann
Alexander Ziller
Orhun Aksoy
Danylo Movchan
Rickmer Braren
Georgios Kaissis
Daniel Rueckert
|
+
|
Bias-Aware Minimisation: Understanding and Mitigating Estimator Bias in Private SGD
|
2023
|
Moritz Knolle
Robert Dorfman
Alexander Ziller
Daniel Rueckert
Georgios Kaissis
|
+
|
Anatomy-Driven Pathology Detection on Chest X-rays
|
2023
|
Philip C. Müller
Felix Meissen
Johannes Brandt
Georgios Kaissis
Daniel Rueckert
|
+
|
MAD: Modality Agnostic Distance Measure for Image Registration
|
2023
|
Vasiliki Sideri-Lampretsa
Veronika A. Zimmer
Huaqi Qiu
Georgios Kaissis
Daniel Rueckert
|
+
|
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
|
2023
|
Karim Lekadir
Aasa Feragen
Abdul Joseph Fofanah
Alejandro F. Frangi
Alena Buyx
Anais Emelie
Andrea Lara
Antonio R. Porras
An‐Wen Chan
Arcadi Navarro
|
+
|
(Predictable) Performance Bias in Unsupervised Anomaly Detection
|
2023
|
Felix Meissen
Svenja Breuer
Moritz Knolle
Alena Buyx
Ruth Müller
Georgios Kaissis
Benedikt Wiestler
Daniel Rückert
|
+
PDF
Chat
|
Propagation and Attribution of Uncertainty in Medical Imaging Pipelines
|
2023
|
Leonhard Feiner
Martin J. Menten
Kerstin Hammernik
Paul Hager
Wenqi Huang
Daniel Rueckert
Rickmer Braren
Georgios Kaissis
|
+
PDF
Chat
|
Body Fat Estimation from Surface Meshes Using Graph Neural Networks
|
2023
|
Tamara T. Mueller
Siyu Zhou
Sophie Starck
Friederike Jungmann
Alexander Ziller
Orhun Aksoy
Danylo Movchan
Rickmer Braren
Georgios Kaissis
Daniel Rueckert
|
+
|
SoK: Memorisation in machine learning
|
2023
|
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
|
+
|
How Low Can You Go? Surfacing Prototypical In-Distribution Samples for Unsupervised Anomaly Detection
|
2023
|
Felix Meissen
Johannes Getzner
Alexander Ziller
Georgios Kaissis
Daniel Rueckert
|
+
|
Reconciling AI Performance and Data Reconstruction Resilience for Medical Imaging
|
2023
|
Alexander Ziller
Tamara T. Mueller
Simon Stieger
Leonhard Feiner
Johannes Brandt
Rickmer Braren
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
Differentially Private Graph Neural Networks for Whole-Graph Classification
|
2022
|
Tamara T. Mueller
Johannes C. Paetzold
Chinmay Prabhakar
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
|
+
|
The Liver Tumor Segmentation Benchmark (LiTS)
|
2022
|
Patrick Bilic
Patrick Ferdinand Christ
Hongwei Li
Eugene Vorontsov
Avi Ben-Cohen
Georgios Kaissis
Adi Szeskin
Colin Jacobs
Gabriel Efrain Humpire Mamani
Gabriel Chartrand
|
+
PDF
Chat
|
Unified Interpretation of the Gaussian Mechanism for Differential Privacy Through the Sensitivity Index
|
2022
|
Georgios Kaissis
Moritz Knolle
Friederike Jungmann
Alexander Ziller
Dmitrii Usynin
Daniel Rueckert
|
+
PDF
Chat
|
Privacy: An Axiomatic Approach
|
2022
|
Alexander Ziller
Tamara T. Mueller
Rickmer Braren
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
Differentially private federated deep learning for multi-site medical image segmentation
|
2022
|
Alexander Ziller
Dmitrii Usynin
Nicolas W. Remerscheid
Moritz Knolle
Rickmer Braren
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
Multi-Modal Unsupervised Brain Image Registration Using Edge Maps
|
2022
|
Vasiliki Sideri-Lampretsa
Georgios Kaissis
Daniel Rueckert
|
+
PDF
Chat
|
Challenging Current Semi-supervised Anomaly Segmentation Methods for Brain MRI
|
2022
|
Felix Meissen
Georgios Kaissis
Daniel Rueckert
|
+
PDF
Chat
|
AutoSeg - Steering the Inductive Biases for Automatic Pathology Segmentation
|
2022
|
Felix Meissen
Georgios Kaissis
Daniel Rueckert
|
+
|
Beyond Gradients: Exploiting Adversarial Priors in Model Inversion Attacks
|
2022
|
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
|
+
|
Differentially private training of residual networks with scale normalisation
|
2022
|
Helena Klause
Alexander Ziller
Daniel Rueckert
Kerstin Hammernik
Georgios Kaissis
|
+
|
Multi-modal unsupervised brain image registration using edge maps
|
2022
|
Vasiliki Sideri-Lampretsa
Georgios Kaissis
Daniel Rueckert
|
+
|
On the Pitfalls of Using the Residual Error as Anomaly Score
|
2022
|
Felix Meissen
Benedikt Wiestler
Georgios Kaissis
Daniel Rueckert
|
+
|
Relationformer: A Unified Framework for Image-to-Graph Generation
|
2022
|
Suprosanna Shit
Rajat Koner
Bastian Wittmann
Johannes C. Paetzold
Ivan Ezhov
Hongwei Li
Jiazhen Pan
Sahand Sharifzadeh
Georgios Kaissis
Volker Tresp
|
+
|
SoK: Differential Privacy on Graph-Structured Data
|
2022
|
Tamara T. Mueller
Dmitrii Usynin
Johannes C. Paetzold
Daniel Rueckert
Georgios Kaissis
|
+
|
Differentially Private Graph Classification with GNNs
|
2022
|
Tamara T. Mueller
Johannes C. Paetzold
Chinmay Prabhakar
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
|
+
|
AutoSeg -- Steering the Inductive Biases for Automatic Pathology Segmentation
|
2022
|
Felix Meissen
Georgios Kaissis
Daniel Rueckert
|
+
|
SmoothNets: Optimizing CNN architecture design for differentially private deep learning
|
2022
|
Nicolas W. Remerscheid
Alexander Ziller
Daniel Rueckert
Georgios Kaissis
|
+
|
Kernel Normalized Convolutional Networks
|
2022
|
Reza Nasirigerdeh
Reihaneh Torkzadehmahani
Daniel Rueckert
Georgios Kaissis
|
+
|
Unsupervised Anomaly Localization with Structural Feature-Autoencoders
|
2022
|
Felix Meissen
Johannes C. Paetzold
Georgios Kaissis
Daniel Rueckert
|
+
|
Bridging the Gap: Differentially Private Equivariant Deep Learning for Medical Image Analysis
|
2022
|
Florian A. Hölzl
Daniel Rueckert
Georgios Kaissis
|
+
|
Kernel Normalized Convolutional Networks for Privacy-Preserving Machine Learning
|
2022
|
Reza Nasirigerdeh
Javad Torkzadehmahani
Daniel Rueckert
Georgios Kaissis
|
+
|
Label Noise-Robust Learning using a Confidence-Based Sieving Strategy
|
2022
|
Reihaneh Torkzadehmahani
Reza Nasirigerdeh
Daniel Rueckert
Georgios Kaissis
|
+
|
Generalised Likelihood Ratio Testing Adversaries through the Differential Privacy Lens
|
2022
|
Georgios Kaissis
Alexander Ziller
Stefan Kolek Martinez de Azagra
Daniel Rueckert
|
+
|
Exploiting segmentation labels and representation learning to forecast therapy response of PDAC patients
|
2022
|
Alexander Ziller
Ayhan Can Erdur
Friederike Jungmann
Daniel Rueckert
Rickmer Braren
Georgios Kaissis
|
+
|
The Role of Local Alignment and Uniformity in Image-Text Contrastive Learning on Medical Images
|
2022
|
Philip C. Müller
Georgios Kaissis
Daniel Rueckert
|
+
|
How Do Input Attributes Impact the Privacy Loss in Differential Privacy?
|
2022
|
Tamara T. Mueller
Stefan Kolek
Friederike Jungmann
Alexander Ziller
Dmitrii Usynin
Moritz Knolle
Daniel Rueckert
Georgios Kaissis
|
+
|
Membership Inference Attacks Against Semantic Segmentation Models
|
2022
|
Tomas Chobola
Dmitrii Usynin
Georgios Kaissis
|
+
PDF
Chat
|
Joint Learning of Localized Representations from Medical Images and Reports
|
2022
|
Philip Müller
Georgios Kaissis
Congyu Zou
Daniel Rueckert
|
+
PDF
Chat
|
Relationformer: A Unified Framework for Image-to-Graph Generation
|
2022
|
Suprosanna Shit
Rajat Koner
Bastian Wittmann
Johannes C. Paetzold
Ivan Ezhov
Hongwei Li
Jiazhen Pan
Sahand Sharifzadeh
Georgios Kaissis
Volker Tresp
|
+
PDF
Chat
|
Can Collaborative Learning Be Private, Robust and Scalable?
|
2022
|
Dmitrii Usynin
Helena Klause
Johannes C. Paetzold
Daniel Rueckert
Georgios Kaissis
|
+
|
Can collaborative learning be private, robust and scalable?
|
2022
|
Dmitrii Usynin
Helena Klause
Johannes C. Paetzold
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
Joint Learning of Localized Representations from Medical Images and
Reports
|
2021
|
Philip C. Müller
Georgios Kaissis
Congyu Zou
Daniel Rückert
|
+
|
Partial sensitivity analysis in differential privacy.
|
2021
|
Tamara T. Mueller
Alexander Ziller
Dmitrii Usynin
Moritz Knolle
Friederike Jungmann
Daniel Rueckert
Georgios Kaissis
|
+
|
An automatic differentiation system for the age of differential privacy.
|
2021
|
Dmitrii Usynin
Alexander Ziller
Moritz Knolle
Daniel Rueckert
Georgios Kaissis
|
+
|
An automatic differentiation system for the age of differential privacy
|
2021
|
Dmitrii Usynin
Alexander Ziller
Moritz Knolle
Daniel Rueckert
Georgios Kaissis
|
+
|
Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience (VesselGraph)
|
2021
|
Johannes C. Paetzold
Julian McGinnis
Suprosanna Shit
Ivan Ezhov
Paul Büschl
Chinmay Prabhakar
Mihail Ivilinov Todorov
Anjany Sekuboyina
Georgios Kaissis
Ali Ertürk
|
+
PDF
Chat
|
U-Noise: Learnable Noise Masks for Interpretable Image Segmentation
|
2021
|
Teddy Koker
Fatemehsadat Mireshghallah
Tom Titcombe
Georgios Kaissis
|
+
PDF
Chat
|
Efficient, high-performance semantic segmentation using multi-scale feature extraction
|
2021
|
Moritz Knolle
Georgios Kaissis
Friederike Jungmann
Sebastian Ziegelmayer
Daniel Sasse
Marcus R. Makowski
Daniel Rueckert
Rickmer Braren
|
+
|
Sensitivity analysis in differentially private machine learning using hybrid automatic differentiation.
|
2021
|
Alexander Ziller
Dmitrii Usynin
Moritz Knolle
Kritika Prakash
Andrew Trask
Rickmer Braren
Marcus R. Makowski
Daniel Rueckert
Georgios Kaissis
|
+
|
Differentially private training of neural networks with Langevin dynamics for calibrated predictive uncertainty
|
2021
|
Moritz Knolle
Alexander Ziller
Dmitrii Usynin
Rickmer Braren
Marcus R. Makowski
Daniel Rueckert
Georgios Kaissis
|
+
|
HyFed: A Hybrid Federated Framework for Privacy-preserving Machine Learning.
|
2021
|
Reza Nasirigerdeh
Reihaneh Torkzadehmahani
Julian Matschinske
Jan Baumbach
Daniel Rueckert
Georgios Kaissis
|
+
|
U-Noise: Learnable Noise Masks for Interpretable Image Segmentation
|
2021
|
Teddy Koker
Fatemehsadat Mireshghallah
Tom Titcombe
Georgios Kaissis
|
+
|
RATCHET: Medical Transformer for Chest X-ray Diagnosis and Reporting
|
2021
|
Benjamin Hou
Georgios Kaissis
Ronald M. Summers
Bernhard Kainz
|
+
|
NeuralDP Differentially private neural networks by design
|
2021
|
Moritz Knolle
Dmitrii Usynin
Alexander Ziller
Marcus R. Makowski
Daniel Rueckert
Georgios Kaissis
|
+
|
Complex-valued deep learning with differential privacy
|
2021
|
Anneliese Riess
Alexander Ziller
Stefan Kolek
Daniel Rueckert
Julia Schnabel
Georgios Kaissis
|
+
PDF
Chat
|
RATCHET: Medical Transformer for Chest X-ray Diagnosis and Reporting
|
2021
|
Benjamin Hou
Georgios Kaissis
Ronald M. Summers
Bernhard Kainz
|
+
|
Distributed Machine Learning and the Semblance of Trust
|
2021
|
Dmitrii Usynin
Alexander Ziller
Daniel Rueckert
Jonathan Passerat‐Palmbach
Georgios Kaissis
|
+
|
Joint Learning of Localized Representations from Medical Images and Reports
|
2021
|
Philip C. Müller
Georgios Kaissis
Congyu Zou
Daniel Rückert
|
+
|
Partial sensitivity analysis in differential privacy
|
2021
|
Tamara T. Mueller
Alexander Ziller
Dmitrii Usynin
Moritz Knolle
Friederike Jungmann
Daniel Rueckert
Georgios Kaissis
|
+
|
Challenging Current Semi-Supervised Anomaly Segmentation Methods for Brain MRI
|
2021
|
Felix Meissen
Georgios Kaissis
Daniel Rueckert
|
+
|
Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience (VesselGraph)
|
2021
|
Johannes C. Paetzold
Julian McGinnis
Suprosanna Shit
Ivan Ezhov
Paul Büschl
Chinmay Prabhakar
Mihail Ivilinov Todorov
Anjany Sekuboyina
Georgios Kaissis
Ali Serol Ertürk
|
+
|
Sensitivity analysis in differentially private machine learning using hybrid automatic differentiation
|
2021
|
Alexander Ziller
Dmitrii Usynin
Moritz Knolle
Kritika Prakash
Andrew Trask
Rickmer Braren
Marcus R. Makowski
Daniel Rueckert
Georgios Kaissis
|
+
|
Differentially private training of neural networks with Langevin dynamics for calibrated predictive uncertainty
|
2021
|
Moritz Knolle
Alexander Ziller
Dmitrii Usynin
Rickmer Braren
Marcus R. Makowski
Daniel Rueckert
Georgios Kaissis
|
+
|
HyFed: A Hybrid Federated Framework for Privacy-preserving Machine Learning
|
2021
|
Reza Nasirigerdeh
Reihaneh Torkzadehmahani
Julian Matschinske
Jan Baumbach
Daniel Rueckert
Georgios Kaissis
|
+
|
U-Noise: Learnable Noise Masks for Interpretable Image Segmentation
|
2021
|
Teddy Koker
Fatemehsadat Mireshghallah
Tom Titcombe
Georgios Kaissis
|
+
|
A unified interpretation of the Gaussian mechanism for differential privacy through the sensitivity index
|
2021
|
Georgios Kaissis
Moritz Knolle
Friederike Jungmann
Alexander Ziller
Dmitrii Usynin
Daniel Rueckert
|
+
|
Differentially private federated deep learning for multi-site medical image segmentation
|
2021
|
Alexander Ziller
Dmitrii Usynin
Nicolas Remerscheid
Moritz Knolle
Marcus R. Makowski
Rickmer Braren
Daniel Rueckert
Georgios Kaissis
|
+
|
An automatic differentiation system for the age of differential privacy
|
2021
|
Dmitrii Usynin
Alexander Ziller
Moritz Knolle
Andrew Trask
Kritika Prakash
Daniel Rueckert
Georgios Kaissis
|
+
PDF
Chat
|
Privacy-preserving medical image analysis
|
2020
|
Alexander Ziller
Jonathan Passerat‐Palmbach
Théo Ryffel
Dmitrii Usynin
Andrew Trask
Ionésio Da Lima
Jason Mancuso
Marcus R. Makowski
Daniel Rueckert
Rickmer Braren
|
+
|
Privacy-preserving medical image analysis
|
2020
|
Alexander Ziller
Jonathan Passerat‐Palmbach
Théo Ryffel
Dmitrii Usynin
Andrew Trask
Ionésio da Lima
Jason Mancuso
Marcus R. Makowski
Daniel Rueckert
Rickmer Braren
|
+
|
The Liver Tumor Segmentation Benchmark (LiTS)
|
2019
|
Patrick Bilic
Patrick Ferdinand Christ
Hongwei Li
Eugene Vorontsov
Avi Ben-Cohen
Georgios Kaissis
Adi Szeskin
Colin Jacobs
Gabriel Efrain Humpire Mamani
Gabriel Chartrand
|
+
PDF
Chat
|
SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D Convolutional Neural Networks
|
2017
|
Patrick Ferdinand Christ
Florian Ettlinger
Georgios Kaissis
Sebastian J. Schlecht
Freba Ahmaddy
Felix Grün
Alexander Valentinitsch
Seyed‐Ahmad Ahmadi
Rickmer Braren
Bjoern Menze
|
+
|
Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks.
|
2017
|
Patrick Ferdinand Christ
Florian Ettlinger
Felix Grün
Mohamed Ezzeldin A. Elshaera
Jana Lipková
Sebastian J. Schlecht
Freba Ahmaddy
Sunil Tatavarty
Marc Bickel
Patrick Bilic
|
+
|
SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks
|
2017
|
Patrick Ferdinand Christ
Florian Ettlinger
Georgios Kaissis
Sebastian J. Schlecht
Freba Ahmaddy
Felix Grün
Alexander Valentinitsch
Seyed‐Ahmad Ahmadi
Rickmer Braren
Bjoern Menze
|
+
|
SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks
|
2017
|
Patrick Ferdinand Christ
Florian Ettlinger
Georgios Kaissis
Sebastian J. Schlecht
Freba Ahmaddy
Felix Grün
Alexander Valentinitsch
Seyed‐Ahmad Ahmadi
Rickmer Braren
Bjoern Menze
|
+
|
Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks
|
2017
|
Patrick Ferdinand Christ
Florian Ettlinger
Felix Grün
Mohamed Ezzeldin A. Elshaera
Jana Lipková
Sebastian J. Schlecht
Freba Ahmaddy
Sunil Tatavarty
Marc Bickel
Patrick Bilic
|