Friedrich Klaus

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Wellposedness of NLS in Modulation Spaces 2023 Friedrich Klaus
+ A priori estimates for a quadratic dNLS 2023 Friedrich Klaus
+ A Strichartz estimate for quasiperiodic functions 2023 Friedrich Klaus
+ Wellposedness for the KdV hierarchy 2023 Friedrich Klaus
Herbert Koch
Baoping Liu
+ A Priori Estimates for the Derivative Nonlinear Schrödinger Equation 2022 Friedrich Klaus
Robert Schippa
+ Global wellposedness of NLS in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo linebreak="goodbreak" linebreakstyle="after">+</mml:mo><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msup><mml:mo stretchy
 2022 Friedrich Klaus
Peer Christian Kunstmann
+ Wellposedness of NLS in Modulation Spaces 2022 Friedrich Klaus
+ Global wellposedness of NLS in $H^1(\mathbb{R})+H^s(\mathbb{T})$ 2021 Friedrich Klaus
Peer Christian Kunstmann
+ PDF Chat Unconditional uniqueness of higher order nonlinear Schrödinger equations 2021 Friedrich Klaus
Peer Christian Kunstmann
Nikolaos Pattakos
+ Global wellposedness of NLS in $H^1(\mathbb{R}) + H^s(\mathbb{T})$ 2021 Friedrich Klaus
Peer Christian Kunstmann
+ A priori estimates for the derivative nonlinear Schrödinger equation 2020 Friedrich Klaus
Robert Schippa
+ A priori estimates for the derivative nonlinear Schrödinger equation 2020 Friedrich Klaus
Robert Schippa
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Knocking Out Teeth in One-Dimensional Periodic Nonlinear Schrödinger Equation 2019 Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
3
+ PDF Chat Conserved energies for the cubic nonlinear Schrödinger equation in one dimension 2018 Herbert Koch
Daniel Tataru
3
+ Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces 2020 Tadahiro Oh
Yuzhao Wang
3
+ PDF Chat Low regularity conservation laws for integrable PDE 2018 Rowan Killip
Monica ViƟan
Xiaoyi Zhang
3
+ PDF Chat NLS in the Modulation Space $$M_{2,q}({\mathbb {R}})$$ M 2 , q ( R ) 2018 Nikolaos Pattakos
2
+ Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:msup></mml:math> 2017 Răzvan MoƟincat
2
+ The global Cauchy problem for the NLS and NLKG with small rough data 2006 Baoxiang Wang
Henryk Hudzik
2
+ PDF Chat Local well-posedness and a priori bounds for the modified Benjamin-Ono equation 2011 Zihua Guo
2
+ On solutions of nonlinear Schrödinger equations with Cantor-type spectrum 1997 Anne Boutet de Monvel
I.Ye. Egorova
2
+ Unimodular Fourier multipliers for modulation spaces 2007 Árpåd Bényi
Karlheinz Gröchenig
Kasso A. Okoudjou
Luke G. Rogers
2
+ PDF Chat Soliton Resolution for the Derivative Nonlinear Schrödinger Equation 2018 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
2
+ PDF Chat Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS 2012 Andrea R. Nahmod
Tadahiro Oh
Luc Rey-Bellet
Gigliola Staffilani
2
+ Geometric Nonlinear Functional Analysis 1999 Yoav Benyamini
Joram Lindenstrauss
2
+ PDF Chat Low Regularity Local Well-Posedness of the Derivative Nonlinear Schrödinger Equation with Periodic Initial Data 2008 Axel GrĂŒnrock
Sebastian Herr
2
+ PDF Chat The derivative NLS equation: global existence with solitons 2017 Dmitry E. Pelinovsky
Aaron Saalmann
Yusuke Shimabukuro
2
+ PDF Chat Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$ 2016 Zihua Guo
Yifei Wu
2
+ PDF Chat Existence of Global Solutions to the Derivative NLS Equation with the Inverse Scattering Transform Method 2017 Dmitry E. Pelinovsky
Yusuke Shimabukuro
2
+ Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data 2015 Tadahiro Oh
2
+ Blow-up Solutions for Mixed Nonlinear Schrödinger Equations 2004 Shao Bin Tan
2
+ PDF Chat On the Cauchy problem for the derivative nonlinear Schrodinger equation with periodic boundary condition 2006 Sebastian Herr
2
+ PDF Chat Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
2
+ PDF Chat Global well-posedness for the cubic nonlinear Schrödinger equation with initial data lying in <i>L</i> <i>p</i>-based Sobolev spaces 2021 Benjamin Dodson
Avy Soffer
Thomas Spencer
2
+ PDF Chat Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations 2001 H. A. Biagioni
Felipe Linares
2
+ Global well-posedness for the derivative non-linear Schrödinger equation 2018 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
2
+ Global well-posedness for Schrödinger equation with derivative in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2011 Changxing Miao
Yifei Wu
Guixiang Xu
2
+ PDF Chat On the 1D Cubic Nonlinear Schrödinger Equation in an Almost Critical Space 2016 Shaoming Guo
2
+ The Periodic Cubic SchrĂ”dinger Equation 1981 Yan‐Chow Ma
Mark J. Ablowitz
2
+ PDF Chat The derivative nonlinear Schrödinger equation: Global well-posedness and soliton resolution 2019 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
2
+ PDF Chat Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space 2013 Yi Wu
2
+ PDF Chat A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative 2002 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
2
+ PDF Chat Derivation of the Hartree equation for compound Bose gases in the mean field limit 2017 Ioannis Anapolitanos
Michael Hott
Dirk Hundertmark
2
+ PDF Chat On a priori estimates and existence of periodic solutions to the modified Benjamin-Ono equation below <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">T</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2021 Robert Schippa
2
+ PDF Chat Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity 1999 Hideo Takaoka
2
+ PDF Chat A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle 2015 Răzvan MoƟincat
Tadahiro Oh
2
+ PDF Chat An introduction to the theory of numbers 1960 G. H. Hardy
1
+ PDF Chat The cubic fourth-order Schrödinger equation 2008 Benoßt Pausader
1
+ Dispersion estimates for fourth order Schrödinger equations 2000 Matania Ben–Artzi
Herbert Koch
Jean‐Claude Saut
1
+ Ill-Posedness Issues for the Benjamin--Ono and Related Equations 2001 Luc Molinet
Jean‐Claude Saut
Nikolay Tzvetkov
1
+ On nonlinear Schrödinger equations, II.H S -solutions and unconditional well-posedness 1995 Tosio Kato
1
+ Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite L2 norm 2001 Ana Vargas
Luis Vega
1
+ Global existence for the derivative NLS equation in the presence of solitons 2017 Aaron Saalmann
1
+ On a class of non linear Schrödinger equations. III. Special theories in dimensions 1, 2 and 3 1978 J. Ginibre
G. Velo
1
+ PDF Chat THE MASS-CRITICAL FOURTH-ORDER SCHRÖDINGER EQUATION IN HIGH DIMENSIONS 2010 Benoüt Pausader
Shuanglin Shao
1
+ The space LP, with mixed norm 1961 A. Benedek
R. Panzone
1
+ PDF Chat Modulation Spaces and Nonlinear Evolution Equations 2012 Michael Ruzhansky
Mitsuru Sugimoto
Baoxiang Wang
1
+ On the existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2017 Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
1
+ Bounds for the maximal function associated to periodic solutions of one-dimensional dispersive equations 2008 Adela Moyua
Luis Vega
1
+ Global Well-posedness for the Derivative Nonlinear Schrödinger Equation Through Inverse Scattering 2017 Jiaqi Liu
1
+ On nonlinear Schrödinger equations 1987 Tosio Kato
1
+ Dispersive Equations and Nonlinear Waves 2014 Herbert Koch
Daniel Tataru
Monica ViƟan
1